Clinical and laboratory features of COVID-19: Predictors of severe prognosis

被引:96
作者
Bastug, Aliye [1 ,7 ]
Bodur, Hurrem [1 ]
Erdogan, Serpil [2 ]
Gokcinar, Derya [3 ]
Kazancioglu, Sumeyye [4 ]
Kosovali, Behiye Deniz [5 ]
Ozbay, Bahadir Orkun [4 ]
Gok, Gamze [2 ]
Turan, Isil Ozkocak [3 ]
Yilmaz, Gulsen [6 ]
Gonen, Canan Cam [5 ]
Yilmaz, Fatma Meric [6 ]
机构
[1] Hlth Sci Univ Turkey, Ankara City Hosp, Dept Infect Dis & Clin Microbiol, TR-06800 Ankara, Turkey
[2] Ankara City Hosp, Fac Med, Dept Med Biochem, TR-06800 Ankara, Turkey
[3] Hlth Sci Univ Turkey, Ankara City Hosp, Dept Anesthesiol & Reanimat, TR-06230 Ankara, Turkey
[4] Ankara City Hosp, Dept Infect Dis & Clin Microbiol, TR-06800 Ankara, Turkey
[5] Ankara City Hosp, Dept Crit Care Med, TR-06800 Ankara, Turkey
[6] Ankara Yildirim Beyazit Univ, Ankara City Hosp, Fac Med, Dept Med Biochem, TR-06800 Ankara, Turkey
[7] Ankara City Hosp, Dept Infect Dis & Clin Microbiol, 1604 Cadde,9, TR-06800 Cankaya, Turkey
关键词
D O I
10.1016/j.intimp.2020.106950
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Background: Coronavirus disease 2019 (COVID-19) emerged first in December 2019 in Wuhan, China and quickly spread throughout the world. Clinical and laboratory data are of importance to increase the success in the management of COVID-19 patients. Methods: Data were obtained retrospectively from medical records of 191 hospitalized patients diagnosed with COVID-19 from a tertiary single-center hospital between March and April 2020. Prognostic effects of variables on admission among patients who received intensive care unit (ICU) support and those who didn't require ICU care were compared. Results: Patients required ICU care (n = 46) were older (median, 71 vs. 43 years), with more underlying comorbidities (76.1% vs. 33.1%). ICU patients had lower lymphocytes, percentage of large unstained cell (%LUC), hemoglobin, total protein, and albumin, but higher leucocytes, neutrophils, neutrophil-lymphocyte ratio (NLR), monocyte-lymphocyte ratio (MLR), platelet-lymphocytes ratio (PLR), urea, creatinine, aspartate amino transferase (AST), lactate dehydrogenase (LDH), and D-dimer when compared with non-critically ill patients (p < 0.001). A logistic regression model was created to include ferritin, %LUC, NLR, and D-dimer. %LUC decrease and D-dimer increase had the highest odds ratios (0.093 vs 5.597, respectively) to predict severe prognosis. D-dimer, CRP, and NLR had the highest AUC in the ROC analysis (0.896, 0.874, 0.861, respectively). Conclusions: The comprehensive analysis of clinical and admission laboratory parameters to identify patients with severe prognosis is important not only for the follow-up of the patients but also to identify the pathophysiology of the disease. %LUC decrease and D-dimer, NLR, and CRP increases seem to be the most powerful laboratory predictors of severe prognosis.
引用
收藏
页数:7
相关论文
共 22 条
[1]  
[Anonymous], 2020, J MED VIROL
[2]  
Chen P., 2020, LIVER INT
[3]  
Deng YT, 2020, CAMB CHINA LIBR, P1
[4]   Clotting Factors in COVID-19: Epidemiological Association and Prognostic Values in Different Clinical Presentations in an Italian Cohort [J].
Di Micco, Pierpaolo ;
Russo, Vincenzo ;
Carannante, Novella ;
Imparato, Michele ;
Rodolfi, Stefano ;
Cardillo, Giuseppe ;
Lodigiani, Corrado .
JOURNAL OF CLINICAL MEDICINE, 2020, 9 (05)
[5]   Hematologic parameters in patients with COVID-19 infection [J].
Fan, Bingwen Eugene ;
Chong, Vanessa Cui Lian ;
Chan, Stephrene Seok Wei ;
Lim, Gek Hsiang ;
Lim, Kian Guan Eric ;
Tan, Guat Bee ;
Mucheli, Sharavan Sadasiv ;
Kuperan, Ponnudurai ;
Ong, Kiat Hoe .
AMERICAN JOURNAL OF HEMATOLOGY, 2020, 95 (06) :E131-E134
[6]   Coagulation disorders in coronavirus infected patients: COVID-19, SARS- CoV-1, MERS-CoV and lessons from the past [J].
Giannis, Dimitrios ;
Ziogas, Ioannis A. ;
Gianni, Panagiota .
JOURNAL OF CLINICAL VIROLOGY, 2020, 127
[7]   Hepatic Carbohydrate Response Element Binding Protein Activation Limits Nonalcoholic Fatty Liver Disease Development in a Mouse Model for Glycogen Storage Disease Type 1a [J].
Lei, Yu ;
Hoogerland, Joanne A. ;
Bloks, Vincent W. ;
Bos, Trijnie ;
Bleeker, Aycha ;
Wolters, Henk ;
Wolters, Justina C. ;
Hijmans, Brenda S. ;
van Dijk, Theo H. ;
Thomas, Rachel ;
van Weeghel, Michel ;
Mithieux, Gilles ;
Houtkooper, Riekelt H. ;
de Bruin, Alain ;
Rajas, Fabienne ;
Kuipers, Folkert ;
Oosterveer, Maaike H. .
HEPATOLOGY, 2020, 72 (05) :1638-1653
[8]   A New Equation to Estimate Glomerular Filtration Rate [J].
Levey, Andrew S. ;
Stevens, Lesley A. ;
Schmid, Christopher H. ;
Zhang, Yaping ;
Castro, Alejandro F., III ;
Feldman, Harold I. ;
Kusek, John W. ;
Eggers, Paul ;
Van Lente, Frederick ;
Greene, Tom ;
Coresh, Josef .
ANNALS OF INTERNAL MEDICINE, 2009, 150 (09) :604-612
[9]  
Li L., 2020, RISK FACTORS RELATED
[10]   Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients [J].
Liu, Jin ;
Li, Sumen ;
Liu, Jia ;
Liang, Boyun ;
Wang, Xiaobei ;
Wang, Hua ;
Li, Wei ;
Tong, Qiaoxia ;
Yi, Jianhua ;
Zhao, Lei ;
Xiong, Lijuan ;
Guo, Chunxia ;
Tian, Jin ;
Luo, Jinzhuo ;
Yao, Jinghong ;
Pang, Ran ;
Shen, Hui ;
Peng, Cheng ;
Liu, Ting ;
Zhang, Qian ;
Wu, Jun ;
Xu, Ling ;
Lu, Sihong ;
Wang, Baoju ;
Weng, Zhihong ;
Han, Chunrong ;
Zhu, Huabing ;
Zhou, Ruxia ;
Zhou, Helong ;
Chen, Xiliu ;
Ye, Pian ;
Zhu, Bin ;
Wang, Lu ;
Zhou, Wenqing ;
He, Shengsong ;
He, Yongwen ;
Jie, Shenghua ;
Wei, Ping ;
Zhang, Jianao ;
Lu, Yinping ;
Wang, Weixian ;
Zhang, Li ;
Li, Ling ;
Zhou, Fengqin ;
Wang, Jun ;
Dittmer, Ulf ;
Lu, Mengji ;
Hu, Yu ;
Yang, Dongliang ;
Zheng, Xin .
EBIOMEDICINE, 2020, 55