On the eigenfunctions of the complex Ornstein-Uhlenbeck operators

被引:11
作者
Chen, Yong [1 ]
Liu, Yong [2 ]
机构
[1] Hunan Univ Sci & Technol, Sch Math & Comp Sci, Xiangtan 411201, Hunan, Peoples R China
[2] Peking Univ, Sch Math Sci, LMAM, Ctr Stat Sci, Beijing 100871, Peoples R China
基金
美国国家科学基金会;
关键词
SEMIGROUPS; SPECTRUM; RESPECT; SPACES;
D O I
10.1215/21562261-2693451
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Starting from the 1-dimensional complex-valued Ornstein-Uhlenbeck process, we present two natural ways to obtain the associated eigenfunctions of the 2-dimensional normal Ornstein-Uhlenbeck operator in the complex Hilbert space L-C(2)(mu) We call the eigenfunctions Hermite-Laguerre-It (o) over cap polynomials. In addition, the Mehler summation formula for the complex process is shown.
引用
收藏
页码:577 / 596
页数:20
相关论文
共 24 条
[1]  
Balescu R., 1997, STATISTICAL DYNAMICS: Matter Out of Equilibrium
[2]   Symmetric Ornstein-Uhlenbeck semigroups and their generators [J].
Chojnowska-Michalik, A ;
Goldys, B .
PROBABILITY THEORY AND RELATED FIELDS, 2002, 124 (04) :459-486
[3]   Nonsymmetric Ornstein-Uhlenbeck semigroup as second quantized operator [J].
ChojnowskaMichalik, A ;
Goldys, B .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1996, 36 (03) :481-498
[4]  
Conway R. A., 1990, GRAD TEXTS MATH, V96
[5]  
Courant R., 1966, METHODS MATH PHYS, V1
[6]  
Horn R.A., 2012, Matrix analysis, DOI [10.1017/CBO9780511810817, DOI 10.1017/CBO9780511810817]
[7]  
Ito K., 1952, JAPAN J MATH, V22, P63
[8]  
Ito Kiyosi, 1951, J. Math. Soc. Japan, V3, P157, DOI 10.2969/jmsj/00310157
[9]  
Janson S., 1997, Gaussian Hilbert Spaces, DOI 10.1017/CBO9780511526169
[10]   L1-spectrum of Banach space valued Ornstein-Uhlenbeck operators [J].
Kozhan, Rostyslav V. .
SEMIGROUP FORUM, 2009, 78 (03) :547-553