Rigidity for closed manifolds with positive curvature

被引:1
作者
Xia, Changyu [1 ,2 ]
机构
[1] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
[2] MPI Math Sci, D-04103 Leipzig, Germany
关键词
Rigidity; Closed manifolds; Sectional curvature; Conjugate locus; SPHERE THEOREM; CURVED MANIFOLDS; RADIUS;
D O I
10.1007/s10455-008-9151-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be an n-dimensional complete connected Riemannian manifold with sectional curvature sec(M) >= 1 and radius rad(M) > pi/2. In this article, we show that M is isometric to a round n-sphere if for any x is an element of M, the first conjugate locus of x is a single point and if M contains a geodesic loop of length 2 . rad(M). We also show that the same conclusion is true if the conjugate value function at any point of M is a constant function.
引用
收藏
页码:105 / 110
页数:6
相关论文
共 21 条
[1]  
ABRESCH U, 1994, J DIFFER GEOM, V40, P643
[2]  
Abresch U, 1996, J DIFFER GEOM, V44, P214
[3]  
ABRESCH U, 1997, COMP GEOM-THEOR APPL, V30, P1
[4]  
Besse A., 1978, Manifolds all of whose geodesics are closed, V93
[5]  
Cheeger J., 1975, Comparison Theorems in Riemannian Geometry
[6]  
do Carmo M., 1993, RIEMANNIAN GEOMETRY, V2nd
[7]   AUF WIEDERSEHENSFLACHEN [J].
GREEN, LW .
ANNALS OF MATHEMATICS, 1963, 78 (02) :289-&
[8]  
GROMOLL D, 1987, ANN SCI ECOLE NORM S, V20, P227
[9]   GENERALIZED SPHERE THEOREM [J].
GROVE, K ;
SHIOHAMA, K .
ANNALS OF MATHEMATICS, 1977, 106 (02) :201-211
[10]   VOLUME COMPARISON A-LA-ALEKSANDROV [J].
GROVE, K ;
PETERSEN, P .
ACTA MATHEMATICA, 1992, 169 (1-2) :131-151