Monovalent silicotungstate salts as electrolytes for electrochemical supercapacitors

被引:19
作者
Gao, Han [1 ]
Virya, Alvin [1 ]
Lian, Keryn [1 ]
机构
[1] Univ Toronto, Dept Mat Sci & Engn, Toronto, ON M5S 3E4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
electrical double layer capacitor; neutral aqueous electrolytes; alkali cations; heteropolyacid salts; ACTIVATED CARBON; HETEROPOLY COMPOUNDS; ACID ELECTROLYTES; DOUBLE-LAYER; CAPACITORS;
D O I
10.1016/j.electacta.2014.06.127
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium, sodium, and potassium salts of silicotungstic acid were synthesized and characterized as aqueous neutral electrolytes for electrochemical supercapacitors. The acidity of the aqueous solution and the structure of the solid-state anion were examined to confirm the presence of SiW salts. Ionic conductivity and the electrochemical stability potential window were characterized and compared to a silicotungstic acid solution using metallic blocking electrodes. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to investigate the performance of carbon EDLC cells enabled by the neutral electrolytes and revealed a 1.5 V cell voltage and good cycle life. The similarities and differences among the three salts are explained based on the properties of cations in these neutral electrolytes. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:240 / 246
页数:7
相关论文
共 32 条
[1]   MODELS FOR HETEROPOLY BLUES - DEGREES OF VALENCE TRAPPING IN VANADIUM(IV)-SUBSTITUTED AND MOLYBDENUM(V)-SUBSTITUTED KEGGIN ANIONS [J].
ALTENAU, JJ ;
POPE, MT ;
PRADOS, RA ;
SO, H .
INORGANIC CHEMISTRY, 1975, 14 (02) :417-421
[2]  
[Anonymous], 1999, ELECTROCHEMICAL SUPE
[3]   A hybrid activated carbon-manganese dioxide capacitor using a mild aqueous electrolyte [J].
Brousse, T ;
Toupin, M ;
Bélanger, D .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (04) :A614-A622
[4]  
Chmiola J, 2006, SCIENCE, V313, P1760, DOI 10.1126/science/1132195
[5]   Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices [J].
Conway, BE ;
Pell, WG .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2003, 7 (09) :637-644
[6]   Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors [J].
Cottineau, T ;
Toupin, M ;
Delahaye, T ;
Brousse, T ;
Bélanger, D .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2006, 82 (04) :599-606
[7]   A symmetric carbon/carbon supercapacitor operating at 1.6 V by using a neutral aqueous solution [J].
Demarconnay, L. ;
Raymundo-Pinero, E. ;
Beguin, F. .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (10) :1275-1278
[8]   Adjustment of electrodes potential window in an asymmetric carbon/MnO2 supercapacitor [J].
Demarconnay, L. ;
Raymundo-Pinero, E. ;
Beguin, F. .
JOURNAL OF POWER SOURCES, 2011, 196 (01) :580-586
[9]   Novel insight into neutral medium as electrolyte for high-voltage supercapacitors [J].
Fic, Krzysztof ;
Lota, Grzegorz ;
Meller, Mikolaj ;
Frackowiak, Elzbieta .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (02) :5842-5850
[10]   Carbon materials for supercapacitor application [J].
Frackowiak, Elzbieta .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (15) :1774-1785