Reconstruction of droughts in India using multiple land-surface models (1951-2015)

被引:76
作者
Mishra, Vimal [1 ]
Shah, Reepal [1 ]
Azhar, Syed [1 ]
Shah, Harsh [1 ]
Modi, Parth [1 ]
Kumar, Rohini [2 ]
机构
[1] Indian Inst Technol IIT Gandhinagar, Civil Engn, Ahmadabad 382355, Gujarat, India
[2] UFZ Helmholtz Ctr Environm Res, Leipzig, Germany
关键词
WATER-BALANCE; GLOBAL EVALUATION; MULTIMODEL; RUNOFF; PRECIPITATION; SENSITIVITY; RESOURCES; FORECAST; CLIMATE; SYSTEM;
D O I
10.5194/hess-22-2269-2018
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
India has witnessed some of the most severe historical droughts in the current decade, and severity, frequency, and areal extent of droughts have been increasing. As a large part of the population of India is dependent on agriculture, soil moisture drought affecting agricultural activities (crop yields) has significant impacts on socioeconomic conditions. Due to limited observations, soil moisture is generally simulated using land-surface hydrological models (LSMs); however, these LSM outputs have uncertainty due to many factors, including errors in forcing data and model parameterization. Here we reconstruct agricultural drought events over India during the period of 1951-2015 based on simulated soil moisture from three LSMs, the Variable Infiltration Capacity (VIC), the Noah, and the Community Land Model (CLM). Based on simulations from the three LSMs, we find that major drought events occurred in 1987, 2002, and 2015 during the monsoon season (June through September). During the Rabi season (November through February), major soil moisture droughts occurred in 1966, 1973, 2001, and 2003. Soil moisture droughts estimated from the three LSMs are comparable in terms of their spatial coverage; however, differences are found in drought severity. Moreover, we find a higher uncertainty in simulated drought characteristics over a large part of India during the major crop-growing season (Rabi season, November to February: NDJF) compared to those of the monsoon season (June to September: JJAS). Furthermore, uncertainty in drought estimates is higher for severe and localized droughts. Higher uncertainty in the soil moisture droughts is largely due to the difference in model parameterizations (especially soil depth), resulting in different persistence of soil moisture simulated by the three LSMs. Our study highlights the importance of accounting for the LSMs' uncertainty and consideration of the multi-model ensemble system for the real-time monitoring and prediction of drought over India.
引用
收藏
页码:2269 / 2284
页数:16
相关论文
共 61 条
[1]  
Abramowitz M., 1965, HDB MATH FUNCTIONS, P1046
[2]  
Asoka A, 2017, NAT GEOSCI, V10, P109, DOI [10.1038/NGEO2869, 10.1038/ngeo2869]
[3]   Global evaluation of runoff from 10 state-of-the-art hydrological models [J].
Beck, Hylke E. ;
van Dijk, Albert I. J. M. ;
de Roo, Ad ;
Dutra, Emanuel ;
Fink, Gabriel ;
Orth, Rene ;
Schellekens, Jaap .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2017, 21 (06) :2881-2903
[4]  
Beven KJ., 1979, HYDROL SCI B, V24, P43, DOI [10.1080/02626667909491834, DOI 10.1080/02626667909491834]
[5]   Global evaluation of MTCLIM and related algorithms for forcing of ecological and hydrological models [J].
Bohn, Theodore J. ;
Livneh, Ben ;
Oyler, Jared W. ;
Running, Steve W. ;
Nijssen, Bart ;
Lettenmaier, Dennis P. .
AGRICULTURAL AND FOREST METEOROLOGY, 2013, 176 :38-49
[6]   Seasonal Hydrologic Forecasting: Do Multimodel Ensemble Averages Always Yield Improvements in Forecast Skill? [J].
Bohn, Theodore J. ;
Sonessa, Mergia Y. ;
Lettenmaier, Dennis P. .
JOURNAL OF HYDROMETEOROLOGY, 2010, 11 (06) :1358-1372
[7]   Landscapes as patches of plant functional types: An integrating concept for climate and ecosystem models [J].
Bonan, GB ;
Levis, S ;
Kergoat, L ;
Oleson, KW .
GLOBAL BIOGEOCHEMICAL CYCLES, 2002, 16 (02)
[8]   Simulation of high-latitude hydrological processes in the Torne-Kalix basin: PILPS phase 2(e) - 1: Experiment description and summary intercomparisons [J].
Bowling, LC ;
Lettenmaier, DP ;
Nijssen, B ;
Graham, LP ;
Clark, DB ;
El Maayar, M ;
Essery, R ;
Goers, S ;
Gusev, YM ;
Habets, F ;
van den Hurk, B ;
Jin, JM ;
Kahan, D ;
Lohmann, D ;
Ma, XY ;
Mahanama, S ;
Mocko, D ;
Nasonova, O ;
Niu, GY ;
Samuelsson, P ;
Shmakin, AB ;
Takata, K ;
Verseghy, D ;
Viterbo, P ;
Xia, YL ;
Xue, YK ;
Yang, ZL .
GLOBAL AND PLANETARY CHANGE, 2003, 38 (1-2) :1-30
[9]   Hydrological evaluation of the Noah-MP land surface model for the Mississippi River Basin [J].
Cai, Xitian ;
Yang, Zong-Liang ;
David, Cedric H. ;
Niu, Guo-Yue ;
Rodell, Matthew .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2014, 119 (01) :23-38
[10]   Modeling of land surface evaporation by four schemes and comparison with FIFE observations [J].
Chen, F ;
Mitchell, K ;
Schaake, J ;
Xue, YK ;
Pan, HL ;
Koren, V ;
Duan, QY ;
Ek, M ;
Betts, A .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D3) :7251-7268