A USE OF CONJUGATE GRADIENT DIRECTION FOR THE CONVEX OPTIMIZATION PROBLEM OVER THE FIXED POINT SET OF A NONEXPANSIVE MAPPING

被引:108
作者
Iiduka, Hideaki [1 ]
Yamada, Isao [2 ]
机构
[1] Kyushu Inst Technol, Network Design Res Ctr, Chiyoda Ku, Tokyo 1000011, Japan
[2] Tokyo Inst Technol, Dept Commun & Integrated Syst, Meguro Ku, Tokyo 1528552, Japan
基金
日本学术振兴会;
关键词
convex optimization problem; nonexpansive mapping; fixed point; hybrid steepest descent method; conjugate gradient direction; GLOBAL CONVERGENCE; MINIMIZATION;
D O I
10.1137/070702497
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss the convex optimization problem over the fixed point set of a nonexpansive mapping. The main objective of the paper is to accelerate the hybrid steepest descent method for the problem. To this goal, we present a new iterative scheme that utilizes the conjugate gradient direction. Its convergence to the solution is guaranteed under certain assumptions. In order to demonstrate the effectiveness, performance, and convergence of our proposed algorithm, we present numerical comparisons of the algorithm with the existing algorithm.
引用
收藏
页码:1881 / 1893
页数:13
相关论文
共 46 条
[1]   DESCENT PROPERTY AND GLOBAL CONVERGENCE OF THE FLETCHER REEVES METHOD WITH INEXACT LINE SEARCH [J].
ALBAALI, M .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1985, 5 (01) :121-124
[2]  
[Anonymous], 1997, Contemporary Mathematics
[3]  
[Anonymous], 1993, Convex Analysis and Minimization Algorithms
[4]   Projection algorithms for solving convex feasibility problems [J].
Bauschke, HH ;
Borwein, JM .
SIAM REVIEW, 1996, 38 (03) :367-426
[5]  
Borwein J., 2000, CMS BOOKS MATH
[6]   A block-iterative surrogate constraint splitting method for quadratic signal recovery [J].
Combettes, PL .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2003, 51 (07) :1771-1782
[7]  
Cragg E. E., 1969, Journal of Optimization Theory and Applications, V4, P191, DOI 10.1007/BF00930579
[8]   Convergence properties of the Fletcher-Reeves method [J].
Dai, YH ;
Yuan, Y .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1996, 16 (02) :155-164
[9]   A nonlinear conjugate gradient method with a strong global convergence property [J].
Dai, YH ;
Yuan, Y .
SIAM JOURNAL ON OPTIMIZATION, 1999, 10 (01) :177-182
[10]  
Deutsch Frank R, 2012, Best Approximation in Inner Product Spaces