H-hypersurfaces with three distinct principal curvatures in the Euclidean spaces

被引:27
作者
Turgay, Nurettin Cenk [1 ]
机构
[1] Istanbul Tech Univ, Fac Sci & Letters, Dept Math, TR-34469 Istanbul, Turkey
关键词
Biharmonic submanifolds; Biconservative maps; Null 2-type submanifolds; CLASSIFICATION;
D O I
10.1007/s10231-014-0445-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study hypersurfaces of Euclidean spaces with arbitrary dimension. First, we obtain some results on H-hypersurfaces. Then, we give the complete classification of H-hypersurfaces with three distinct curvatures. We also give some explicit examples.
引用
收藏
页码:1795 / 1807
页数:13
相关论文
共 14 条
[1]  
[Anonymous], ARXIV13123053
[2]   Surfaces in three-dimensional space forms with divergence-free stress-bienergy tensor [J].
Caddeo, R. ;
Montaldo, S. ;
Oniciuc, C. ;
Piu, P. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (02) :529-550
[3]  
Chen B. Y., 1991, SOOCHOW J MATH, V17, P169
[4]  
Chen B.Y., 1984, Total Mean Curvature and Submanifolds of Finite Type
[5]  
Chen B.-Y., 1996, Soochow J. Math, V22, P117
[6]  
Chen B.Y., 2011, Pseudo-Riemannian Geometry, delta-Invariants and Applications
[7]   Biharmonic ideal hypersurfaces in Euclidean spaces [J].
Chen, Bang-Yen ;
Munteanu, Marian Ioan .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2013, 31 (01) :1-16
[8]   δ(2)-IDEAL NULL 2-TYPE HYPERSURFACES OF EUCLIDEAN SPACE ARE SPHERICAL CYLINDERS [J].
Chen, Bang-Yen ;
Garay, Oscar J. .
KODAI MATHEMATICAL JOURNAL, 2012, 35 (02) :382-391
[9]   SOME CLASSIFICATION-THEOREMS FOR SUBMANIFOLDS IN MINKOWSKI SPACE-TIME [J].
CHEN, BY .
ARCHIV DER MATHEMATIK, 1994, 62 (02) :177-182
[10]  
Dimitric I., 1992, B I MATH ACAD SINICA, V20, P53