Predicting New Adopters via Socially-Aware Neural Graph Collaborative Filtering

被引:1
|
作者
Tsai, Yu-Che [1 ,3 ]
Guan, Muzhi [2 ,3 ]
Li, Cheng-Te [1 ]
Cha, Meeyoung [3 ,4 ]
Li, Yong [2 ]
Wang, Yue [2 ]
机构
[1] Natl Cheng Kong Univ, Dept Stat, Tainan, Taiwan
[2] Tsinghua Univ, Dept Elect Engn, Beijing, Peoples R China
[3] Inst for Basic Sci Korea, Data Sci Grp, Daejeon, South Korea
[4] Korea Adv Inst Sci & Technol, Sch Comp, Daejeon, South Korea
来源
COMPUTATIONAL DATA AND SOCIAL NETWORKS | 2019年 / 11917卷
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
Graph convolutional network; Collaborative filtering; Representation learning;
D O I
10.1007/978-3-030-34980-6_18
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We predict new adopters of specific items by proposing SNGCF, a socially-aware neural graph collaborative filtering model. This model uses information about social influence and item adoptions; then it learns the representation of user-item relationships via a graph convolutional network. Experiments show that social influence is essential for adopter prediction. S-NGCF outperforms the prediction of new adopters compared to state-of-the-art methods by 18%.
引用
收藏
页码:155 / 162
页数:8
相关论文
共 50 条
  • [1] Location-aware neural graph collaborative filtering
    Li, Shengwen
    Sun, Chenpeng
    Chen, Renyao
    Li, Xinchuan
    Liang, Qingzhong
    Gong, Junfang
    Yao, Hong
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2022, 36 (08) : 1550 - 1574
  • [2] Socially-Aware Graph Convolutional Network for Human Trajectory Prediction
    Sun, Yasheng
    He, Tao
    Hu, Jie
    Huang, Haiqing
    Chen, Biao
    PROCEEDINGS OF 2019 IEEE 3RD INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2019), 2019, : 325 - 333
  • [3] SAMPAC: Socially-Aware collaborative Multi-Party Access Control
    Ilia, Panagiotis
    Carminati, Barbara
    Ferrari, Elena
    Fragopoulou, Paraskevi
    Ioannidis, Sotiris
    PROCEEDINGS OF THE SEVENTH ACM CONFERENCE ON DATA AND APPLICATION SECURITY AND PRIVACY (CODASPY'17), 2017, : 71 - 82
  • [4] Socially-Aware Robot Planning via Bandit Human Feedback
    Luo, Xusheng
    Zhang, Yan
    Zavlanos, Michael M.
    2020 ACM/IEEE 11TH INTERNATIONAL CONFERENCE ON CYBER-PHYSICAL SYSTEMS (ICCPS 2020), 2020, : 216 - 225
  • [5] Region-aware neural graph collaborative filtering for personalized recommendation
    Li, Shengwen
    Chen, Renyao
    Sun, Chenpeng
    Yao, Hong
    Cheng, Xuyang
    Li, Zhuoru
    Li, Tailong
    Kang, Xiaojun
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2022, 15 (01) : 1446 - 1462
  • [6] Neural Graph Collaborative Filtering
    Wang, Xiang
    He, Xiangnan
    Wang, Meng
    Feng, Fuli
    Chua, Tat-Seng
    PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), 2019, : 165 - 174
  • [7] Sharpness-Aware Graph Collaborative Filtering
    Chen, Huiyuan
    Yeh, Chin-Chia Michael
    Fan, Yujie
    Zheng, Yan
    Wang, Junpeng
    Lai, Vivian
    Das, Mahashweta
    Yang, Hao
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 2369 - 2373
  • [8] Neural Causal Graph collaborative filtering
    Wang, Xiangmeng
    Li, Qian
    Yu, Dianer
    Huang, Wei
    Li, Qing
    Xu, Guandong
    INFORMATION SCIENCES, 2024, 677
  • [9] Item Attribute-aware Graph Collaborative Filtering
    Li, Anchen
    Liu, Xueyan
    Yang, Bo
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [10] Graph DNA: Deep Neighborhood Aware Graph Encoding for Collaborative Filtering
    Wu, Liwei
    Yu, Hsiang-Fu
    Rao, Nikhil
    Sharpnack, James
    Hsieh, Cho-Jui
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108