Study on microporous supported ionic liquid membranes for carbon dioxide capture

被引:22
作者
Cheng, Li-Hua [1 ]
Rahaman, Muhammad Syukri Abd [2 ,3 ]
Yao, Ru [2 ]
Zhang, Lin [2 ]
Xu, Xin-Hua [1 ]
Chen, Huan-Lin [2 ]
Lai, Juin-Yih [4 ,5 ]
Tung, Kuo-Lun [4 ,5 ]
机构
[1] Zhejiang Univ, Dept Environm Engn, Hangzhou 310058, Zhejiang, Peoples R China
[2] Zhejiang Univ, Dept Chem & Biol Engn, Hangzhou 310027, Zhejiang, Peoples R China
[3] Univ Kebangsaan Malaysia, Dept Chem & Proc Engn, Bangi 43600, Malaysia
[4] Chung Yuan Christian Univ, R&D Ctr Membrane Technol, Chungli 32023, Taiwan
[5] Chung Yuan Christian Univ, Dept Chem Engn, Chungli 32023, Taiwan
基金
中国国家自然科学基金;
关键词
CO2; capture; SILMs; Asymmetric membrane; Symmetric membrane; PVDF; CO2; CAPTURE; SEPARATION; AIR;
D O I
10.1016/j.ijggc.2013.11.015
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
To capture carbon dioxide directly from ambient air, the fabrication of supported ionic liquid membranes (SILMs) on asymmetric and symmetric microporous poly(vinylidene fluoride) (PVDF) membranes were studied. The effect of support membrane structure on the IL loading, the stability of fabricated SILMs, and the carbon dioxide (CO2) capturing abilities of both SILMs were evaluated. The evaluations include the gas permeation of pure CO2 and nitrogen (N-2), the mixed CO2-N-2 gases containing 50%, 10% and 1% CO2, and the directly compressed ambient air. The results demonstrated that pure CO2 showed the highest permeance, followed by CO2-air and then N-2. Compared with asymmetric SILMs which had higher gas permeance, the symmetric SILMs had better selectivity for CO2/N-2, to more than 20 of CO2/N-2 selectivity, for both single and mixed gases. The SILMs also were found to be capable of capturing CO2 from air from 2 to more than 5 of CO2/air selectivity for separation of air enriched with low CO2 concentrations (10%, 1% and zero) as the transmembrane pressure increased to 0.25 MPa. Thus, this work might provide a potential method for sequestering CO2 directly from atmosphere to avoid the need for extensive CO2-transportation. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:82 / 90
页数:9
相关论文
共 23 条
  • [1] A review of carbon dioxide capture and utilization by membrane integrated microalgal cultivation processes
    Abd Rahaman, Muhammad Syukri
    Cheng, Li-Hua
    Xu, Xin-Hua
    Zhang, Lin
    Chen, Huan-Lin
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (08) : 4002 - 4012
  • [2] Process design and energy requirements for the capture of carbon dioxide from air
    Baciocchi, Renato
    Storti, Giuseppe
    Mazzotti, Marco
    [J]. CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2006, 45 (12) : 1047 - 1058
  • [3] Gas separations in fluoroalkyl-functionalized room-temperature ionic liquids using supported liquid membranes
    Bara, Jason E.
    Gabriel, Christopher J.
    Carlisle, Trevor K.
    Camper, Dean E.
    Finotello, Alexia
    Gin, Douglas L.
    Noble, Richard D.
    [J]. CHEMICAL ENGINEERING JOURNAL, 2009, 147 (01) : 43 - 50
  • [4] High-pressure phase behavior of ionic liquid/CO2 systems
    Blanchard, LA
    Gu, ZY
    Brennecke, JF
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (12) : 2437 - 2444
  • [5] Main-chain imidazolium polymer membranes for CO2 separations: An initial study of a new ionic liquid-inspired platform
    Carlisle, Trevor K.
    Bara, Jason E.
    Lafrate, Andrew L.
    Gin, Douglas L.
    Noble, Richard D.
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2010, 359 (1-2) : 37 - 43
  • [6] Cheng L.H., 2008, J MEMBRANE SCI, V5, P8318
  • [7] Characterization of substructure resistance in asymmetric gas separation membranes
    Clausi, DT
    McKelvey, SA
    Koros, WJ
    [J]. JOURNAL OF MEMBRANE SCIENCE, 1999, 160 (01) : 51 - 64
  • [8] Gas separation properties of supported liquid membranes prepared with unconventional ionic liquids
    Cserjesi, Petra
    Nemestothy, Nandor
    Belafi-Bako, Katalin
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2010, 349 (1-2) : 6 - 11
  • [9] Dangerous human-made interference with climate: a GISS modelE study
    Hansen, J.
    Sato, M.
    Ruedy, R.
    Kharecha, P.
    Lacis, A.
    Miller, R.
    Nazarenko, L.
    Lo, K.
    Schmidt, G. A.
    Russell, G.
    Aleinov, I.
    Bauer, S.
    Baum, E.
    Cairns, B.
    Canuto, V.
    Chandler, M.
    Cheng, Y.
    Cohen, A.
    Del Genio, A.
    Faluvegi, G.
    Fleming, E.
    Friend, A.
    Hall, T.
    Jackman, C.
    Jonas, J.
    Kelley, M.
    Kiang, N. Y.
    Koch, D.
    Labow, G.
    Lerner, J.
    Menon, S.
    Novakov, T.
    Oinas, V.
    Perlwitz, Ja.
    Perlwitz, Ju.
    Rind, D.
    Romanou, A.
    Schmunk, R.
    Shindell, D.
    Stone, P.
    Sun, S.
    Streets, D.
    Tausnev, N.
    Thresher, D.
    Unger, N.
    Yao, M.
    Zhang, S.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 (09) : 2287 - 2312
  • [10] Ionic liquids for CO2 capture-Development and progress
    Hasib-ur-Rahman, M.
    Siaj, M.
    Larachi, F.
    [J]. CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2010, 49 (04) : 313 - 322