Damped equations of Mathieu type

被引:9
作者
Choudhury, A. Ghose [1 ]
Guha, Partha [2 ]
机构
[1] Surendranath Coll, Dept Phys, Kolkata 700009, India
[2] SN Bose Natl Ctr Basic Sci, Kolkata 700098, India
关键词
Mathieu equation; First integrals; Jacobi's last multiplier; Lagrangians; Van der Pol-Mathieu equation; JACOBI LAST MULTIPLIER; PENDULUM;
D O I
10.1016/j.amc.2013.11.106
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain the first integrals of various extensions of the Mathieu equation by exploiting the integrable time-dependent classical dynamics introduced by Bartuccelli and Gentile (2003) [6]. We also compute the Lagrangian of the Van der Pol-Mathieu equation using Jacobi's last multiplier and consider certain coupled versions of time-dependent equations of the oscillator type. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:85 / 93
页数:9
相关论文
共 29 条
[11]  
Euler L., 1769, E366 I CALCULI INTEG
[12]   The Riccati and Ermakov-Pinney hierarchies [J].
Euler, Marianna ;
Euler, Norbert ;
Leach, Peter .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2007, 14 (02) :290-310
[13]  
Guha P., PREPRINT
[14]  
Jacobi C G J., 1845, J. Reine Angew. Math, V29, P333
[15]  
Jacobi C G J., 1845, J. Reine Angew. Math, V29, P213
[16]  
Jacobi C.G.J., 1844, GIORNALE ARCADICO SC, VXCIX, P129
[17]   THE ERMAKOV EQUATION: A COMMENTARY [J].
Leach, P. G. L. ;
Andriopoulos, K. .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2008, 2 (02) :146-157
[18]  
Mak M.K., ARXIV12046545V1
[19]  
Mathieu E., 1868, J. Math. Pures Appl, V13, P137
[20]  
McLachlan N.W., 1947, Theory and Application of Mathieu Functions