Damped equations of Mathieu type

被引:9
作者
Choudhury, A. Ghose [1 ]
Guha, Partha [2 ]
机构
[1] Surendranath Coll, Dept Phys, Kolkata 700009, India
[2] SN Bose Natl Ctr Basic Sci, Kolkata 700098, India
关键词
Mathieu equation; First integrals; Jacobi's last multiplier; Lagrangians; Van der Pol-Mathieu equation; JACOBI LAST MULTIPLIER; PENDULUM;
D O I
10.1016/j.amc.2013.11.106
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain the first integrals of various extensions of the Mathieu equation by exploiting the integrable time-dependent classical dynamics introduced by Bartuccelli and Gentile (2003) [6]. We also compute the Lagrangian of the Van der Pol-Mathieu equation using Jacobi's last multiplier and consider certain coupled versions of time-dependent equations of the oscillator type. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:85 / 93
页数:9
相关论文
共 29 条
[1]   Approximate asymptotics for a nonlinear Mathieu equation using harmonic balance based averaging [J].
Abraham, GT ;
Chatterjee, A .
NONLINEAR DYNAMICS, 2003, 31 (04) :347-365
[2]   A PENDULUM THEOREM [J].
ACHESON, DJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1993, 443 (1917) :239-245
[3]  
[Anonymous], 1990, COURSE MODERN ANAL
[4]  
[Anonymous], 1844, J REINE ANGEW MATH
[5]  
Arnold V.I., 2006, Ordinary Differential Equations, V58291st
[6]  
Arscott FM, 1964, Periodic Differential Equations
[7]   On the stability of the upside-down pendulum with damping [J].
Bartuccelli, MV ;
Gentile, G ;
Georgiou, KV .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 458 (2018) :255-269
[8]   On a class of integrable time-dependent dynamical systems [J].
Bartuccelli, MV ;
Gentile, G .
PHYSICS LETTERS A, 2003, 307 (5-6) :274-280
[9]  
Bessa E., ARXIV10065025V1NLINC
[10]   On the Jacobi Last Multiplier, integrating factors and the Lagrangian formulation of differential equations of the Painleve-Gambier classification [J].
Choudhury, A. Ghose ;
Guha, Partha ;
Khanra, Barun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 360 (02) :651-664