Boost particle swarm optimization with fitness estimation

被引:7
作者
Li, Lu [1 ]
Liang, Yanchun [1 ,2 ]
Li, Tingting [1 ]
Wu, Chunguo [1 ]
Zhao, Guozhong [3 ]
Han, Xiaosong [1 ,3 ]
机构
[1] Jilin Univ, Key Lab Symbol Computat & Knowledge Engn, Natl Educ Minist, Coll Comp Sci & Technol, Changchun 130012, Jilin, Peoples R China
[2] Jilin Univ, Zhuhai Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Zhuhai Coll, Zhuhai 519041, Peoples R China
[3] CNPC, Daqing Oilfield Explorat & Dev Res Inst, Daqing Oilfield Personnel Dev Inst, Daqing 163000, Peoples R China
基金
中国国家自然科学基金;
关键词
Particle swarm optimization; Support vector regression; Affinity propagation clustering algorithm; Fitness estimation; ALGORITHM;
D O I
10.1007/s11047-018-9699-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
It is well known that the classical particle swarm optimization (PSO) is time-consuming when used to solve complex fitness optimization problems. In this study, we perform in-depth research on fitness estimation based on the distance between particles and affinity propagation clustering. In addition, support vector regression is employed as a surrogate model for estimating fitness values instead of using the objective function. The particle swarm optimization algorithm based on affinity propagation clustering, the efficient particle swarm optimization algorithm, and the particle swarm optimization algorithm based on support vector regression machine are then proposed. The experimental results show that the new algorithms significantly reduce the computational counts of the objective function. Compared with the classical PSO, the optimization results exhibit no loss of accuracy or stability.
引用
收藏
页码:229 / 247
页数:19
相关论文
共 50 条
  • [31] Fitness and historical success information-assisted binary particle swarm optimization for feature selection
    Gupta, Shubham
    Gupta, Saurabh
    KNOWLEDGE-BASED SYSTEMS, 2024, 306
  • [32] Unified particle swarm delivers high efficiency to particle swarm optimization
    Tsai, Hsing-Chih
    APPLIED SOFT COMPUTING, 2017, 55 : 371 - 383
  • [33] Estimation of Allpass Transfer Functions by Introducing Sparsity Constraints to Particle Swarm Optimization
    Vijayan, Karthika
    Murty, K. Sri Rama
    2014 TWENTIETH NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2014,
  • [34] Visualizing particle swarm optimization - Gaussian particle swarm optimization
    Secrest, BR
    Lamont, GB
    PROCEEDINGS OF THE 2003 IEEE SWARM INTELLIGENCE SYMPOSIUM (SIS 03), 2003, : 198 - 204
  • [35] Particle Swarm Optimization Based Approach for Estimation of Costs and Duration of Construction Projects
    Khalaf, Tarq Zaed
    Caglar, Hakan
    Caglar, Arzu
    Hanoon, Ammar N.
    CIVIL ENGINEERING JOURNAL-TEHRAN, 2020, 6 (02): : 384 - 401
  • [36] Estimation of water content of natural gases using particle swarm optimization method
    Ahmadi, Mohammad-Ali
    Ahmad, Zainal
    Le Thi Kim Phung
    Kashiwao, Tomoaki
    Bahadori, Alireza
    PETROLEUM SCIENCE AND TECHNOLOGY, 2016, 34 (07) : 595 - 600
  • [37] Analysis of particle interaction in particle swarm optimization
    Chen, Ying-ping
    Jiang, Pei
    THEORETICAL COMPUTER SCIENCE, 2010, 411 (21) : 2101 - 2115
  • [38] Exponential Particle Swarm Optimization for Global Optimization
    Kassoul, Khelil
    Zufferey, Nicolas
    Cheikhrouhou, Naoufel
    Belhaouari, Samir Brahim
    IEEE ACCESS, 2022, 10 : 78320 - 78344
  • [39] Particle swarm optimization approach to portfolio optimization
    Cura, Tunchan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (04) : 2396 - 2406
  • [40] An Improved Particle Swarm Optimization for Global Optimization
    Yan, Ping
    Jiao, Ming-hai
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 2181 - 2185