Behavior of Raman D band for pyrocarbons with crystallite size in the 2-5 nm range

被引:38
作者
Mallet-Ladeira, Philippe [1 ]
Puech, Pascal [1 ]
Weisbecker, Patrick [2 ]
Vignoles, Gerard L. [3 ]
Monthioux, Marc [1 ]
机构
[1] Univ Toulouse, CEMES CNRS, UPR8011, Toulouse 4, France
[2] CNRS, Lab Composites ThermoStruct, UMR 5801, F-33600 Pessac, France
[3] Univ Bordeaux 1, Lab Composites ThermoStruct, UMR 5801, F-33600 Pessac, France
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2014年 / 114卷 / 03期
关键词
SPECTROSCOPY; GRAPHENE; CARBON; DIFFRACTION; DEFECTS; DIAMOND;
D O I
10.1007/s00339-013-7671-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The pyrocarbon materials investigated here are examples of disordered graphene-based carbons whose crystallite size L (a) ranges from 2 to 5 nm. This L (a) size range is between two different Raman behaviors, one for which the D band broadens (for L (a) < 2 nm) and the other for which the D band sharpens (for L (a) > 5 nm) respectively, with increasing L (a) . To fully understand the nature of the G band signal, we checked its wavelength behavior from UV to near IR. We demonstrated that the Raman spectrum is well fitted with simply two Lorentzians with various respective contributions centered at the wavenumber of the D band and a Breit-Wigner-Fano shape for the G band. Each intensity contribution for the D band varies linearly with L (a) between 2 and 5 nm while the total D band intensity is nearly constant for excitation wavelengths ranging from 0.532 to 0.638 mu m. In contrast, the integrated intensity ratio D/G follows the well-known law. The two subbands building the D band are related to the lifetime of the electrons involved in the double resonance process which can be scattered twice. Their respective occurrences therefore depend on the crystallite size L (a) , when below a parts per thousand 5 nm.
引用
收藏
页码:759 / 763
页数:5
相关论文
共 21 条
[1]   How to obtain a reliable structural characterization of polished graphitized carbons by Raman microspectroscopy [J].
Ammar, M. R. ;
Rouzaud, J. -N. .
JOURNAL OF RAMAN SPECTROSCOPY, 2012, 43 (02) :207-211
[2]   D band Raman intensity calculation in armchair edged graphene nanoribbons [J].
Barros, E. B. ;
Sato, K. ;
Samsonidze, Ge. G. ;
Souza Filho, A. G. ;
Dresselhaus, M. S. ;
Saito, R. .
PHYSICAL REVIEW B, 2011, 83 (24)
[3]   Boundary problems for Dirac electrons and edge-assisted Raman scattering in graphene [J].
Basko, D. M. .
PHYSICAL REVIEW B, 2009, 79 (20)
[4]   Low Temperature Raman Study of the Electron Coherence Length near Graphene Edges [J].
Beams, Ryan ;
Cancado, Luiz Gustavo ;
Novotny, Lukas .
NANO LETTERS, 2011, 11 (03) :1177-1181
[5]   Regenerative laminar pyrocarbon [J].
Bourrat, X ;
Fillion, A ;
Naslain, R ;
Chollon, G ;
Brendlé, M .
CARBON, 2002, 40 (15) :2931-2945
[6]   Measuring the absolute Raman cross section of nanographites as a function of laser energy and crystallite size [J].
Cancado, L. G. ;
Jorio, A. ;
Pimenta, M. A. .
PHYSICAL REVIEW B, 2007, 76 (06)
[7]   Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies [J].
Cancado, L. G. ;
Jorio, A. ;
Martins Ferreira, E. H. ;
Stavale, F. ;
Achete, C. A. ;
Capaz, R. B. ;
Moutinho, M. V. O. ;
Lombardo, A. ;
Kulmala, T. S. ;
Ferrari, A. C. .
NANO LETTERS, 2011, 11 (08) :3190-3196
[8]   General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy [J].
Cançado, LG ;
Takai, K ;
Enoki, T ;
Endo, M ;
Kim, YA ;
Mizusaki, H ;
Jorio, A ;
Coelho, LN ;
Magalhaes-Paniago, R ;
Pimenta, MA .
APPLIED PHYSICS LETTERS, 2006, 88 (16)
[9]   Raman Spectroscopy of Graphene Edges [J].
Casiraghi, C. ;
Hartschuh, A. ;
Qian, H. ;
Piscanec, S. ;
Georgi, C. ;
Fasoli, A. ;
Novoselov, K. S. ;
Basko, D. M. ;
Ferrari, A. C. .
NANO LETTERS, 2009, 9 (04) :1433-1441
[10]   Interpretation of Raman spectra of disordered and amorphous carbon [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2000, 61 (20) :14095-14107