Block projection methods for linear systems

被引:2
作者
Brezinski, C
Zaglia, MR
机构
[1] Univ Sci & Technol Lille, Lab Anal Numer & Optimisat, F-59655 Villeneuve Dascq, France
[2] Univ Calabria, Dipartmento Matemat, I-87036 Arcavacata Di Rende, Italy
关键词
linear systems; projection methods;
D O I
10.1023/A:1014847603659
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to provide a theory of block projection methods for the solution of a system of linear equations with multiple right-hand sides. Our approach allows to obtain recursive algorithms for the implementation of these methods.
引用
收藏
页码:33 / 43
页数:11
相关论文
共 21 条
[1]   THE LANCZOS - ARNOLDI ALGORITHM AND CONTROLLABILITY [J].
BOLEY, DL ;
GOLUB, GH .
SYSTEMS & CONTROL LETTERS, 1984, 4 (06) :317-324
[2]   A BREAKDOWN-FREE LANCZOS TYPE ALGORITHM FOR SOLVING LINEAR-SYSTEMS [J].
BREZINSKI, C ;
ZAGLIA, MR ;
SADOK, H .
NUMERISCHE MATHEMATIK, 1992, 63 (01) :29-38
[3]   RECURSIVE INTERPOLATION, EXTRAPOLATION AND PROJECTION [J].
BREZINSKI, C .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1983, 9 (04) :369-376
[4]   The block Lanczos and Vorobyev methods [J].
Brezinski, C .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (02) :137-142
[5]   LANCZOS-TYPE ALGORITHMS FOR SOLVING SYSTEMS OF LINEAR-EQUATIONS [J].
BREZINSKI, C ;
SADOK, H .
APPLIED NUMERICAL MATHEMATICS, 1993, 11 (06) :443-473
[6]  
BREZINSKI C, 1984, LECT NOTES MATH, V1071, P1
[7]   Krylov subspace methods, biorthogonal polynomials and Pade-type approximants [J].
Brezinski, C .
NUMERICAL ALGORITHMS, 1999, 21 (1-4) :97-107
[8]   Multiparameter descent methods [J].
Brezinski, C .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 296 (1-3) :113-141
[9]  
BREZINSKI C, 1993, CONTRIBUTIONS NUMERI, P55
[10]  
BREZINSKI C, 1997, PROJECTION METHODS S