CRAMER TYPE MODERATE DEVIATIONS FOR RANDOM FIELDS

被引:7
作者
Beknazaryan, Aleksandr [1 ]
Sang, Hailin [1 ]
Xiao, Yimin [2 ]
机构
[1] Univ Mississippi, Dept Math, University, MS 38677 USA
[2] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
关键词
Cramer type moderate deviation; long range dependence; nonparametric regression; spatial linear process; random field; LIMIT-THEOREM; PROBABILITIES; SUMS; MARTINGALES; REGRESSION; BOUNDS;
D O I
10.1017/jpr.2019.15
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the Cramer type moderate deviation for partial sums of random fields by applying the conjugate method. The results are applicable to the partial sums of linear random fields with short or long memory and to nonparametric regression with random field errors.
引用
收藏
页码:223 / 245
页数:23
相关论文
共 49 条
[1]  
AMOSOVA NN, 1979, THEOR PROBAB APPL+, V24, P856
[2]  
Asmussen S., 2010, Ruin probabilities
[3]  
Babu G.J., 1978, Sankhya Ser. A, V40, P38
[4]  
Babu G.J., 1978, Sankhya Ser. A, V40, P28
[5]   ON DEVIATIONS OF THE SAMPLE-MEAN [J].
BAHADUR, RR ;
RAO, RR .
ANNALS OF MATHEMATICAL STATISTICS, 1960, 31 (04) :1015-1027
[6]  
Bingham N. H., 1989, REGULAR VARIATION
[7]  
Cramer H., 1938, Scientifiques et Industrielles, V736, P5
[8]   Cramer large deviation expansions for martingales under Bernstein's condition [J].
Fan, Xiequan ;
Grama, Ion ;
Liu, Quansheng .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (11) :3919-3942
[9]   Generalization of a probability limit theorem of Cramer [J].
Feller, W. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1943, 54 (1-3) :361-372
[10]  
Frolov A. N., 2002, J. Math. Sci. (New York), V127, P1787, DOI DOI 10.1007/S10958-005-0141-Z