Singularity analysis of fourth-order Moller-Plesset perturbation theory

被引:7
作者
Goodson, David Z. [1 ]
Sergeev, Alexey V. [1 ]
机构
[1] SE Massachusetts Univ, Dept Chem & Biochem, N Dartmouth, MA 02747 USA
关键词
many-body perturbation theory; Moller-Plesset perturbation theory; quadratic summation approximants; asymptotic series; singularity analysis;
D O I
10.1016/j.physleta.2006.06.071
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The usefulness of Moller-Plesset perturbation theory, a standard technique of quantum chemistry, is determined by singularities in the corresponding energy function in the complex plane of the perturbation parameter. A method is developed that locates singularities from fourth-order perturbation series, using quadratic approximants with bilinear conformal mappings. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:481 / 486
页数:6
相关论文
共 41 条
[3]  
BAKER GA, 1996, PADE APPROXIMANTS, P531
[4]   RADIUS OF CONVERGENCE AND ANALYTIC BEHAVIOR OF THE 1/Z EXPANSION [J].
BAKER, JD ;
FREUND, DE ;
HILL, RN ;
MORGAN, JD .
PHYSICAL REVIEW A, 1990, 41 (03) :1247-1273
[5]   On the inherent divergence in the Moller-Plesset series. The neon atom - A test case [J].
Christiansen, O ;
Olsen, J ;
Jorgensen, P ;
Koch, H ;
Malmqvist, PA .
CHEMICAL PHYSICS LETTERS, 1996, 261 (03) :369-378
[6]  
CRAWFORD TD, 2003, PSI VERSION 3 2
[7]   Sixth-order Moller-Plesset perturbation theory - On the convergence of the MPn series [J].
Cremer, D ;
He, Z .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (15) :6173-6188
[8]  
Cremer D., 1998, ENCY COMPUTATIONAL C, P1706
[9]  
DARBOUX MG, 1878, J MATH, V3, P377