Machine learning classifiers for predicting 3-year progression-free survival and overall survival in patients with gliomas after surgery

被引:2
作者
Zhang, Bin [1 ]
Yan, Jing [2 ]
Chen, Weiqi [3 ,4 ]
Dong, Yuhao [5 ,6 ]
Zhang, Lu [1 ]
Mo, Xiaokai [1 ]
Chen, Qiuying [1 ]
Cheng, Jingliang [2 ]
Liu, Xianzhi [7 ]
Wang, Weiwei [8 ]
Zhang, Zhenyu [7 ]
Zhang, Shuixing [1 ]
机构
[1] Jinan Univ, Affiliated Hosp 1, Dept Radiol, Guangzhou, Guangdong, Peoples R China
[2] Zhengzhou Univ, Affiliated Hosp 1, Dept MRI, Zhengzhou, Peoples R China
[3] Jinan Univ, Big Data Decis Inst, Guangzhou, Guangdong, Peoples R China
[4] Jinan Univ, Sch Management, Dept Catheterizat Lab, Guangdong Cardiovasc Inst,Prov Key Lab South Chin, Guangzhou, Guangdong, Peoples R China
[5] Struct Heart Dis, Guangzhou, Guangdong, Peoples R China
[6] Guangdong Acad Med Sci, Peoples Hosp, Guangzhou, Guangdong, Peoples R China
[7] Zhengzhou Univ, Affiliated Hosp 1, Dept Neurosurg, Zhengzhou, Peoples R China
[8] Zhengzhou Univ, Affiliated Hosp 1, Dept Pathol, Zhengzhou, Peoples R China
来源
JOURNAL OF CANCER | 2021年 / 12卷 / 06期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
gliomas; molecular biomarkers; machine learning; progression-free survival; overall survival; TERT PROMOTER MUTATIONS; GRADE GLIOMA; TUMORS; IDH; CLASSIFICATION; CONTRIBUTE; SUBSET; 19Q; 1P;
D O I
10.7150/jca.52183
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: To develop machine-learning based models to predict the progression-free survival (PFS) and overall survival (OS) in patients with gliomas and explore the effect of different feature selection methods on the prediction. Methods: We included 505 patients (training cohort, n = 354; validation cohort, n = 151) with gliomas between January 1, 2011 and December 31, 2016. The clinical, neuroimaging, and molecular genetic data of patients were retrospectively collected. The multi-causes discovering with structure learning (McDSL) algorithm, least absolute shrinkage and selection operator regression (LASSO), and Cox proportional hazards regression model were employed to discover the predictors for 3-year PFS and OS, respectively. Eight machine learning classifiers with 5-fold cross-validation were developed to predict 3-year PFS and OS. The area under the curve (AUC) was used to evaluate the prognostic performance of classifiers. Results: McDSL identified four causal factors (tumor location, WHO grade, histologic type, and molecular genetic group) for 3-year PFS and OS, whereas LASSO and Cox identified wide-range number of factors associated with 3-year PFS and OS. The performance of each machine learning classifier based on McDSL, LASSO, and Cox was not significantly different. Logistic regression yielded the optimal performance in predicting 3-year PFS based on the McDSL (AUC, 0.872, 95% confidence interval [CI]: 0.828-0.916) and 3-year OS based on the LASSO (AUC, 0.901, 95% CI: 0.861-0.940). Conclusions: McDSL is more reproducible than LASSO and Cox model in the feature selection process. Logistic regression model may have the highest performance in predicting 3-year PFS and OS of gliomas.
引用
收藏
页码:1604 / 1615
页数:12
相关论文
共 41 条
  • [1] Alimohammadi E, 2020, ACTA NEUROL BELG, V120, P1341, DOI 10.1007/s13760-019-01171-x
  • [2] Updates in prognostic markers for gliomas
    Aquilanti, Elisa
    Miller, Julie
    Santagata, Sandro
    Cahill, Daniel P.
    Brastianos, Priscilla K.
    [J]. NEURO-ONCOLOGY, 2018, 20 : 17 - 26
  • [3] Radiomic MRI Phenotyping of Glioblastoma: Improving Survival Preciction
    Bae, Sohi
    Choi, Yoon Seong
    Ahn, Sung Soo
    Chang, Jong Hee
    Kang, Seok-Gu
    Kim, Eui Hyun
    Kim, Se Hoon
    Lee, Seung-Koo
    [J]. RADIOLOGY, 2018, 289 (03) : 797 - 806
  • [4] Temozolomide chemotherapy versus radiotherapy in high-risk low-grade glioma (EORTC 22033-26033): a randomised, open-label, phase 3 intergroup study
    Baumert, Brigitta G.
    Hegi, Monika E.
    van den Bent, Martin J.
    von Deimling, Andreas
    Gorlia, Thierry
    Hoang-Xuan, Khe
    Brandes, Alba A.
    Kantor, Guy
    Taphoorn, Martin J. B.
    Ben Hassel, Mohamed
    Hartmann, Christian
    Ryan, Gail
    Capper, David
    Kros, Johan M.
    Kurscheid, Sebastian
    Wick, Wolfgang
    Enting, Roelien
    Reni, Michele
    Thiessen, Brian
    Dhermain, Frederic
    Bromberg, Jacoline E.
    Feuvret, Loic
    Reijneveld, Jaap C.
    Chinot, Olivier
    Gijtenbeek, Johanna M. M.
    Rossiter, John P.
    Dif, Nicolas
    Balana, Carmen
    Bravo-Marques, Jose
    Clement, Paul M.
    Marosi, Christine
    Tzuk-Shina, Tzahala
    Nordal, Robert A.
    Rees, Jeremy
    Lacombe, Denis
    Mason, Warren P.
    Stupp, Roger
    [J]. LANCET ONCOLOGY, 2016, 17 (11) : 1521 - 1532
  • [5] Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas
    Brat, Daniel J.
    Verhaak, Roel G. W.
    Al-dape, Kenneth D.
    Yung, W. K. Alfred
    Salama, Sofie R.
    Cooper, Lee A. D.
    Rheinbay, Esther
    Miller, C. Ryan
    Vitucci, Mark
    Morozova, Olena
    Robertson, A. Gordon
    Noushmehr, Houtan
    Laird, Peter W.
    Cherniack, Andrew D.
    Akbani, Rehan
    Huse, Jason T.
    Ciriello, Giovanni
    Poisson, Laila M.
    Barnholtz-Sloan, Jill S.
    Berger, Mitchel S.
    Brennan, Cameron
    Colen, Rivka R.
    Colman, Howard
    Flanders, Adam E.
    Giannini, Caterina
    Grifford, Mia
    Iavarone, Antonio
    Jain, Rajan
    Joseph, Isaac
    Kim, Jaegil
    Kasaian, Katayoon
    Mikkelsen, Tom
    Murray, Bradley A.
    O'Neill, Brian Patrick
    Pachter, Lior
    Parsons, Donald W.
    Sougnez, Carrie
    Sulman, Erik P.
    Vandenberg, Scott R.
    Van Meir, Erwin G.
    von Deimling, Andreas
    Zhang, Hailei
    Crain, Daniel
    Lau, Kevin
    Mallery, David
    Morris, Scott
    Paulauskis, Joseph
    Penny, Robert
    Shelton, Troy
    Sherman, Mark
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (26) : 2481 - 2498
  • [6] The Somatic Genomic Landscape of Glioblastoma
    Brennan, Cameron W.
    Verhaak, Roel G. W.
    McKenna, Aaron
    Campos, Benito
    Noushmehr, Houtan
    Salama, Sofie R.
    Zheng, Siyuan
    Chakravarty, Debyani
    Sanborn, J. Zachary
    Berman, Samuel H.
    Beroukhim, Rameen
    Bernard, Brady
    Wu, Chang-Jiun
    Genovese, Giannicola
    Shmulevich, Ilya
    Barnholtz-Sloan, Jill
    Zou, Lihua
    Vegesna, Rahulsimham
    Shukla, Sachet A.
    Ciriello, Giovanni
    Yung, W. K.
    Zhang, Wei
    Sougnez, Carrie
    Mikkelsen, Tom
    Aldape, Kenneth
    Bigner, Darell D.
    Van Meir, Erwin G.
    Prados, Michael
    Sloan, Andrew
    Black, Keith L.
    Eschbacher, Jennifer
    Finocchiaro, Gaetano
    Friedman, William
    Andrews, David W.
    Guha, Abhijit
    Iacocca, Mary
    O'Neill, Brian P.
    Foltz, Greg
    Myers, Jerome
    Weisenberger, Daniel J.
    Penny, Robert
    Kucherlapati, Raju
    Perou, Charles M.
    Hayes, D. Neil
    Gibbs, Richard
    Marra, Marco
    Mills, Gordon B.
    Lander, Eric
    Spellman, Paul
    Wilson, Richard
    [J]. CELL, 2013, 155 (02) : 462 - 477
  • [7] Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma
    Ceccarelli, Michele
    Barthel, Floris P.
    Malta, Tathiane M.
    Sabedot, Thais S.
    Salama, Sofie R.
    Murray, Bradley A.
    Morozova, Olena
    Newton, Yulia
    Radenbaugh, Amie
    Pagnotta, Stefano M.
    Anjum, Samreen
    Wang, Jiguang
    Manyam, Ganiraju
    Zoppoli, Pietro
    Ling, Shiyun
    Rao, Arjun A.
    Grifford, Mia
    Cherniack, Andrew D.
    Zhang, Hailei
    Poisson, Laila
    Carlotti, Carlos Gilberto, Jr.
    Tirapelli, Daniela Pretti da Cunha
    Rao, Arvind
    Mikkelsen, Tom
    Lau, Ching C.
    Yung, W. K. Alfred
    Rabadan, Raul
    Huse, Jason
    Brat, Daniel J.
    Lehman, Norman L.
    Barnholtz-Sloan, Jill S.
    Zheng, Siyuan
    Hess, Kenneth
    Rao, Ganesh
    Meyerson, Matthew
    Beroukhim, Rameen
    Cooper, Lee
    Akbani, Rehan
    Wrensch, Margaret
    Haussler, David
    Aldape, Kenneth D.
    Laird, Peter W.
    Gutmann, David H.
    Noushmehr, Houtan
    Iavarone, Antonio
    Verhaak, Roel G. W.
    [J]. CELL, 2016, 164 (03) : 550 - 563
  • [8] Combined analysis of TERT, EGFR, and IDH status defines distinct prognostic glioblastoma classes
    Chamberlain, Marc C.
    Sanson, Marc
    [J]. NEUROLOGY, 2015, 84 (19) : 2007 - 2007
  • [9] TERT promoter mutations contribute to subset prognostication of lower-grade gliomas
    Chan, Aden Ka-Yin
    Yao, Yu
    Zhang, Zhenyu
    Chung, Nellie Yuk-Fei
    Liu, Joseph Shu-Ming
    Li, Kay Ka-Wai
    Shi, Zhifeng
    Chan, Danny Tat-Ming
    Poon, Wai Sang
    Zhou, Liangfu
    Ng, Ho-Keung
    [J]. MODERN PATHOLOGY, 2015, 28 (02) : 177 - 186
  • [10] Phase III randomized study of radiation and temozolomide versus radiation and nitrosourea therapy for anaplastic astrocytoma: results of NRG Oncology RTOG 9813
    Chang, Susan
    Zhang, Peixin
    Cairncross, J. Gregory
    Gilbert, Mark R.
    Bahary, Jean-Paul
    Dolinskas, Carol A.
    Chakravarti, Arnab
    Aldape, Kenneth D.
    Bell, Erica H.
    Schiff, David
    Jaeckle, Kurt
    Brown, Paul D.
    Barger, Geoffrey R.
    Werner-Wasik, Maria
    Shih, Helen
    Brachman, David
    Penas-Prado, Marta
    Robins, H. Ian
    Belanger, Karl
    Schultz, Christopher
    Hunter, Grant
    Mehta, Minesh
    [J]. NEURO-ONCOLOGY, 2017, 19 (02) : 252 - 258