Sampling-based visual assessment computing techniques for an efficient social data clustering

被引:11
作者
Basha, M. Suleman [1 ]
Mouleeswaran, S. K. [1 ]
Prasad, K. Rajendra [2 ]
机构
[1] Dayananda Sagar Univ, Dept Comp Sci & Engn, Bangalore, Karnataka, India
[2] Rajeev Gandhi Mem Coll Engn & Technol, Dept Comp Sci & Engn, Nandyal, India
关键词
Cluster tendency; Social data clustering; Scalability; Visual methods; Feature extraction; ALGORITHMS; FRAMEWORK;
D O I
10.1007/s11227-021-03618-6
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Visual methods were used for pre-cluster assessment and useful cluster partitions. Existing visual methods, such as visual assessment tendency (VAT), spectral VAT (SpecVAT), cosine-based VAT (cVAT), and multi-viewpoints cosine-based similarity VAT (MVS-VAT), effectively assess the knowledge about the number of clusters or cluster tendency. Tweets data partitioning is underlying the problem of social data clustering. Cosine-based visual methods succeeded widely in text data clustering. Thus, cVAT and MVS-VAT are the best suited methods for the derivation of social data clusters. However, MVS-VAT is facing the problem of scalability issues in terms of computational time and memory allocation. Therefore, this paper presents the sampling-based MVS-VAT computing technique to overcome the scalability problem in social data clustering to select sample inter-cluster viewpoints. Standard health keywords and benchmarked TREC2017 and TREC2018 health keywords are taken to extract health tweets in the experiment for illustrating the performance comparison between existing and proposed visual methods.
引用
收藏
页码:8013 / 8037
页数:25
相关论文
共 29 条
[11]   A framework for recommending health-related topics based on topic modeling in conversational data (Twitter) [J].
Kaveri, V. Vijeya ;
Maheswari, V. .
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 5) :10963-10968
[12]  
Kumar Dheeraj, 2013, 2013 IEEE International Conference on Big Data, P112, DOI 10.1109/BigData.2013.6691561
[13]   A Hybrid Approach to Clustering in Big Data [J].
Kumar, Dheeraj ;
Bezdek, James C. ;
Palaniswami, Marimuthu ;
Rajasegarar, Sutharshan ;
Leckie, Christopher ;
Havens, Timothy Craig .
IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (10) :2372-2385
[14]  
Lee DD, 2001, ADV NEUR IN, V13, P556
[15]  
Lin YS, 2014, IEEE T KNOWLEDGE DAT
[16]  
Pattanodom M, 2016, 2016 SECOND ASIAN CONFERENCE ON DEFENCE TECHNOLOGY (ACDT), P151, DOI 10.1109/ACDT.2016.7437660
[17]  
Prasad KR, 2021, EVOL INTELL, V14, P545, DOI 10.1007/s12065-019-00300-y
[18]  
Prasad KR, 2019, INT J ADV COMPUT SC, V10, P490
[19]  
Rajendra Prasad K, 2016, IEEE 10 INT C INT SY
[20]   Extended fuzzy c-means: an analyzing data clustering problems [J].
Ramathilagam, S. ;
Devi, R. ;
Kannan, S. R. .
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2013, 16 (03) :389-406