3D and ternary rGO/MCNTs/Fe3O4 composite hydrogels: Synthesis, characterization and their electromagnetic wave absorption properties

被引:151
作者
Zhang, Hui [1 ]
Hong, Miao [2 ]
Chen, Ping [2 ]
Xie, Anjian [2 ]
Shen, Yuhua [2 ]
机构
[1] Anhui Univ, Sch Phys & Mat Sci, Hefei 230601, Peoples R China
[2] Anhui Univ, Sch Chem & Chem Engn, Hefei 230601, Peoples R China
基金
中国国家自然科学基金;
关键词
Composite materials; Chemical synthesis; Dielectric response; Wave absorption; MICROWAVE ABSORBING PROPERTIES; HIGH-PERFORMANCE; GRAPHENE; FABRICATION; NANOCOMPOSITES; NANOCRYSTALS; LIGHTWEIGHT;
D O I
10.1016/j.jallcom.2016.01.091
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, we synthesize 3D and ternary composite hydrogels containing reduced graphene oxide, multi-walled carbon nanotubes andd Fe3O4 nanoparticles (rGO/MCNTs/Fe3O4) via hydrothermal process. The fibrous MCNTs are involved in 3D porous network rGO structure, and the 100-200 nm Fe3O4 nanoparticles are uniformly dispersed onto the rGO and MCNTs surface. The rGO/MWCNTs/Fe3O4 composite hydrogels exhibit excellent microwave absorbability. The composite with a coating layer thickness of only 2.0 mm exhibits a maximum absorption value of -36 dB at 13.44 GHz. And the composite hydrogel shows a bandwidth of 11.4 GHz (from frequency of 6.5-17.9 GHz) corresponding to the reflection loss at -10 dB (90% absorption) with a thickness range of 2.0-4.0 mm. Thus, the as-prepared rGO/MCNTs/Fe3O4 composite hydrogels serve as a new member of promising lightweight and high-performance EM wave absorbing materials. The great reason for their excellent microwave absorption properties is also ascribed to the better impedance match. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:381 / 387
页数:7
相关论文
共 37 条
[1]   Green Approach To Prepare Graphene-Based Composites with High Microwave Absorption Capacity [J].
Bai, Xin ;
Zhai, Yinghao ;
Zhang, Yong .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (23) :11673-11677
[2]   Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes [J].
Che, RC ;
Peng, LM ;
Duan, XF ;
Chen, Q ;
Liang, XL .
ADVANCED MATERIALS, 2004, 16 (05) :401-+
[3]   Controllable fabrication of mono-dispersed RGO-hematite nanocomposites and their enhanced wave absorption properties [J].
Chen, Dezhi ;
Wang, Guang-Sheng ;
He, Shuai ;
Liu, Jia ;
Guo, Lin ;
Cao, Mao-Sheng .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (19) :5996-6003
[4]   A Nitrogen-Doped Graphene/Carbon Nanotube Nanocomposite with Synergistically Enhanced Electrochemical Activity [J].
Chen, Ping ;
Xiao, Tian-Yuan ;
Qian, Yu-Hong ;
Li, Shan-Shan ;
Yu, Shu-Hong .
ADVANCED MATERIALS, 2013, 25 (23) :3192-3196
[5]   Enhanced electromagnetic wave absorption properties of polyaniline-coated Fe3O4/reduced graphene oxide nanocomposites [J].
Chen, Tian ;
Qiu, Jinhao ;
Zhu, Kongjun ;
Che, Yincheng ;
Zhang, Yun ;
Zhang, Jiamin ;
Li, Hao ;
Wang, Fei ;
Wang, Zhenzhen .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2014, 25 (09) :3664-3673
[6]   Hexagonal and cubic Ni nanocrystals grown on graphene: phase-controlled synthesis, characterization and their enhanced microwave absorption properties [J].
Chen, Tingting ;
Deng, Fang ;
Zhu, Jia ;
Chen, Caifeng ;
Sun, Genban ;
Ma, Shulan ;
Yang, Xiaojing .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (30) :15190-15197
[7]   Electromagnetic absorption properties of graphene/Fe nanocomposites [J].
Chen, Yujin ;
Lei, Zhenyu ;
Wu, Hongyu ;
Zhu, Chunling ;
Gao, Peng ;
Ouyang, Qiuyun ;
Qi, Li-Hong ;
Qin, Wei .
MATERIALS RESEARCH BULLETIN, 2013, 48 (09) :3362-3366
[8]   Lightweight and Flexible Graphene Foam Composites for High-Performance Electromagnetic Interference Shielding [J].
Chen, Zongping ;
Xu, Chuan ;
Ma, Chaoqun ;
Ren, Wencai ;
Cheng, Hui-Ming .
ADVANCED MATERIALS, 2013, 25 (09) :1296-1300
[9]   Monodisperse magnetic single-crystal ferrite microspheres [J].
Deng, H ;
Li, XL ;
Peng, Q ;
Wang, X ;
Chen, JP ;
Li, YD .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (18) :2782-2785
[10]   Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites [J].
Fan, Zhuangjun ;
Luo, Guohua ;
Zhang, Zengfu ;
Zhou, Li ;
Wei, Fei .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2006, 132 (1-2) :85-89