Nanoindentation into a high-entropy alloy - An atomistic study

被引:104
作者
Alhafez, Iyad Alabd [1 ,2 ]
Ruestes, Carlos J. [3 ,4 ]
Bringa, Eduardo M. [5 ,6 ]
Urbassek, Herbert M. [1 ,2 ]
机构
[1] Univ Kaiserslautern, Phys Dept, Erwin Schrodinger Str, D-67663 Kaiserslautern, Germany
[2] Univ Kaiserslautern, Res Ctr OPTIMAS, Erwin Schrodinger Str, D-67663 Kaiserslautern, Germany
[3] Univ Nacl Cuyo, CONICET, RA-5500 Mendoza, Argentina
[4] Univ Nacl Cuyo, Fac Ciencias Exactas & Nat, RA-5500 Mendoza, Argentina
[5] Univ Mendoza, CONICET, RA-5500 Mendoza, Argentina
[6] Univ Mendoza, Fac Ingn, RA-5500 Mendoza, Argentina
关键词
Molecular dynamics; Nanoindentation; Dislocations; Plasticity; High-entropy alloys; DISLOCATION CROSS-SLIP; MECHANICAL-PROPERTIES; CO-CR; INCIPIENT PLASTICITY; PHASE-TRANSFORMATION; ELASTIC-MODULI; SOLID-SOLUTION; SINGLE-PHASE; DEFORMATION; NUCLEATION;
D O I
10.1016/j.jallcom.2019.06.277
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The plastic response of a high-entropy alloy is explored by means of simulated nanoindentation tests. We compare nanoindentation into the Cantor alloy - an equi-atomic CoCrFeMnNi fcc solid solution - with that into an elemental Ni fcc single crystal. Using molecular dynamics simulation, strong differences in the plastic behavior are identified. While the total length of the dislocation network in the Cantor alloy is higher than in Ni, the size of the plastic zone is considerably restricted. Dislocations are more localized in the Cantor alloy, both during indentation, but also during retraction of the indenter; emission of prismatic loops is absent in the Cantor alloy. Besides dislocation-mediated plasticity, considerable twinning occurs. No amorphization could be observed. These simulation results are in good qualitative agreement with our current knowledge of plasticity in high entropy alloys. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:618 / 624
页数:7
相关论文
共 78 条
[1]   Atomistic modeling of nanoscale plasticity in high-entropy alloys [J].
Aitken, Zachary H. ;
Sorkin, Viacheslav ;
Zhang, Yong-Wei .
JOURNAL OF MATERIALS RESEARCH, 2019, 34 (09) :1509-1532
[2]  
[Anonymous], 2016, HIGH ENTROPY ALLOYS, DOI DOI 10.1007/978-3-319-27013-5_6
[3]  
[Anonymous], AIP C P
[4]  
[Anonymous], PROG MATER SCI
[5]  
[Anonymous], 2007, ParaView Guide, A Parallel Visualization Application
[6]   MODIFIED EMBEDDED-ATOM POTENTIALS FOR CUBIC MATERIALS AND IMPURITIES [J].
BASKES, MI .
PHYSICAL REVIEW B, 1992, 46 (05) :2727-2742
[7]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[8]   Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study [J].
Choi, Won-Mi ;
Jo, Yong Hee ;
Sohn, Seok Su ;
Lee, Sunghak ;
Lee, Byeong-Joo .
NPJ COMPUTATIONAL MATERIALS, 2018, 4
[9]   Modified embedded-atom method interatomic potentials for the Co-Cr, Co-Fe, Co-Mn, Cr-Mn and Mn-Ni binary systems [J].
Choi, Won-Mi ;
Kim, Yongmin ;
Seol, Donghyuk ;
Lee, Byeong-Joo .
COMPUTATIONAL MATERIALS SCIENCE, 2017, 130 :121-129
[10]   Design of a twinning-induced plasticity high entropy alloy [J].
Deng, Y. ;
Tasan, C. C. ;
Pradeep, K. G. ;
Springer, H. ;
Kostka, A. ;
Raabe, D. .
ACTA MATERIALIA, 2015, 94 :124-133