The Boundedness of the Riesz Potential Operator from Generalized Grand Lebesgue Spaces to Generalized Grand Morrey Spaces

被引:0
作者
Umarkhadzhiev, Salaudin [1 ]
机构
[1] Chechen State Univ, Sheripov St 32, Grozny 364051, Russia
来源
OPERATOR THEORY, OPERATOR ALGEBRAS AND APPLICATIONS | 2014年 / 242卷
关键词
Grand Lebesgue space; Grand Morrey space; interpolation theorem; Riesz potential; Muckenhoupt-Wheeden weight; SINGULAR INTEGRAL-OPERATORS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce weighted generalized Grand Morrey spaces and prove that the boundedness of linear operators from the generalized Grand Lebesgue spaces to generalized Morrey spaces may be derived from their boundedness from classical weighted Lebesgue spaces into weighted Morrey spaces. As an application we prove a theorem on mapping properties of the Riesz potential operator from weighted generalized Grand Lebesgue spaces to weighted generalized Grand Morrey spaces with Muckenhoupt-Wheeden A(p,q)-weights, under some natural assumptions on the way how we generalize grand spaces.
引用
收藏
页码:363 / 373
页数:11
相关论文
共 30 条
[1]  
ADAMS DR, 1975, DUKE MATH J, V42, P765, DOI 10.1215/S0012-7094-75-04265-9
[2]  
[Anonymous], 1983, MULTIPLE INTEGRALS C
[3]  
[Anonymous], 2013, ADV HARMONIC ANAL OP
[4]  
[Anonymous], 2005, J. Funct. Spaces, DOI 10.1155/2005/192538
[5]   A direct approach to the duality of grand and small Lebesgue spaces [J].
Di Fratta, Giovanni ;
Fiorenza, Alberto .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (07) :2582-2592
[6]  
DIFAZIO G, 1991, B UNIONE MAT ITAL, V5A, P323
[7]  
Ding Y., 2001, Int. J. Math. Math. Sci., V25, P517
[8]   The maximal theorem for weighted grand Lebesgue spaces [J].
Fiorenza, Alberto ;
Gupta, Babita ;
Jain, Pankaj .
STUDIA MATHEMATICA, 2008, 188 (02) :123-133
[9]  
Gilbarg D., 1977, Grundlehren der Mathematischen Wissenschaften, V224
[10]   Inverting the p-harmonic operator [J].
Greco, L ;
Iwaniec, T ;
Sbordone, C .
MANUSCRIPTA MATHEMATICA, 1997, 92 (02) :249-258