Modelling solid-convective flash pyrolysis of straw and wood in the Pyrolysis Centrifuge Reactor

被引:34
作者
Bech, Niels [1 ]
Larsen, Morten Boberg [2 ]
Jensen, Peter Arendt [1 ]
Dam-Johansen, Kim [1 ]
机构
[1] Tech Univ Denmark, Dept Chem Engn, CHEC Res Ctr, DK-2800 Lyngby, Denmark
[2] FLSmidth AS, DK-2500 Valby, Denmark
关键词
Flash pyrolysis; Ablative; Solid convective; Pyrolysis centrifuge reactor; Wheat straw; Pine wood; Modelling; Bio-oil; Biocrude; FLUIDIZED-BED REACTOR; BIOMASS PYROLYSIS; NUMERICAL-SIMULATION; CELLULOSE; COMBUSTION; KINETICS; LIGNIN; WHEAT;
D O I
10.1016/j.biombioe.2009.03.009
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Less than a handful of solid-convective pyrolysis reactors for the production of liquid fuel from biomass have been presented and for only a single reactor a detailed mathematical model has been presented. In this article we present a predictive mathematical model of the pyrolysis process in the Pyrolysis Centrifuge Reactor, a novel solid-convective flash pyrolysis reactor. The model relies on the original concept for ablative pyrolysis of particles being pyrolysed through the formation of an intermediate liquid compound which is further degraded to form liquid organics, char, and gas. To describe the kinetics of the pyrolysis reactions the Broido-Shafizadeh scheme is employed with cellulose parameters for wood and modified parameters for straw to include the catalytic effect of its alkali-containing ash content. The model describes the presented experimental results adequately for engineering purposes for both wood and straw feedstock even though conditions for ablative pyrolysis from a reaction engineering point of view are not satisfied. Accordingly, even though the concept of an ablatively melting particle may constitute a limiting case, it can still be used to model flash pyrolysis provided that the reacting particle continuously shed the formed char layer. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:999 / 1011
页数:13
相关论文
共 45 条
  • [1] BECH N, 2006, Patent No. 2006117005
  • [2] BECH N, 2008, THESIS DTU DK
  • [3] Bech N., 2007, P 15 EUR BIOM C EXH, P1276
  • [4] Bird R B., 2002, Transportphenomena
  • [5] CFB air-blown flash pyrolysis. Part I: Engineering design and cold model performance
    Boukis, I. Ph.
    Grammelis, P.
    Bezergianni, S.
    Bridgwater, A. V.
    [J]. FUEL, 2007, 86 (10-11) : 1372 - 1386
  • [6] Flash pyrolysis of cellulose pellets submitted to a concentrated radiation:: experiments and modelling
    Boutin, O
    Ferrer, M
    Lédé, J
    [J]. CHEMICAL ENGINEERING SCIENCE, 2002, 57 (01) : 15 - 25
  • [7] BOYSAN F, 1982, T I CHEM ENG-LOND, V60, P222
  • [8] BRIDGWATER AV, 2003, Patent No. 03057800
  • [9] A unified correlation for estimating HHV of solid, liquid and gaseous fuels
    Channiwala, SA
    Parikh, PP
    [J]. FUEL, 2002, 81 (08) : 1051 - 1063
  • [10] NUMERICAL-SIMULATION OF CELLULOSE PYROLYSIS
    DIBLASI, C
    [J]. BIOMASS & BIOENERGY, 1994, 7 (1-6) : 87 - 98