Progressive perception-oriented network for single image super-resolution

被引:38
|
作者
Hui, Zheng [1 ]
Li, Jie [1 ]
Gao, Xinbo [1 ,2 ]
Wang, Xiumei [1 ]
机构
[1] Xidian Univ, Video & Image Proc Syst VIPS Lab, Sch Elect Engn, 2 South Taibai Rd, Xian 710071, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Image Cognit, Chongqing 400065, Peoples R China
基金
中国国家自然科学基金;
关键词
Perceptual image super-resolution; Progressive related works learning; Multi-scale hierarchical fusion;
D O I
10.1016/j.ins.2020.08.114
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, it has been demonstrated that deep neural networks can significantly improve the performance of single image super-resolution (SISR). Numerous studies have concentrated on raising the quantitative quality of super-resolved (SR) images. However, these methods that target PSNR maximization usually produce blurred images at large upscaling factor. The introduction of generative adversarial networks (GANs) can mitigate this issue and show impressive results with synthetic high-frequency textures. Nevertheless, these GAN-based approaches always have a tendency to add fake textures and even artifacts to make the SR image of visually higher-resolution. In this paper, we propose a novel perceptual image super-resolution method that progressively generates visually high-quality results by constructing a stage-wise network. Specifically, the first phase concentrates on minimizing pixel-wise error, and the second stage utilizes the features extracted by the previous stage to pursue results with better structural retention. The final stage employs fine structure features distilled by the second phase to produce more realistic results. In this way, we can maintain the pixel, and structural level information in the perceptual image as much as possible. It is useful to note that the proposed method can build three types of images in a feed-forward process. Also, we explore a new generator that adopts multi-scale hierarchical features fusion. Extensive experiments on benchmark datasets show that our approach is superior to the state-of-the-art methods. Code is available at https://github.com/Zheng222/PPON. (c) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:769 / 786
页数:18
相关论文
共 50 条
  • [41] PYRAMID FUSION ATTENTION NETWORK FOR SINGLE IMAGE SUPER-RESOLUTION
    He, Hao
    Du, Zongcai
    Li, Wenfeng
    Tang, Jie
    Wu, Gangshan
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2165 - 2169
  • [42] Rectified Binary Network for Single-Image Super-Resolution
    Xin, Jingwei
    Wang, Nannan
    Jiang, Xinrui
    Li, Jie
    Wang, Xiaoyu
    Gao, Xinbo
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [43] A Compact Deep Neural Network for Single Image Super-Resolution
    Xu, Xiaoyu
    Qian, Jian
    Yu, Li
    Yu, Shengju
    HaoTao
    Zhu, Ran
    MULTIMEDIA MODELING (MMM 2020), PT II, 2020, 11962 : 148 - 160
  • [44] Adaptive deep residual network for single image super-resolution
    Liu, Shuai
    Gang, Ruipeng
    Li, Chenghua
    Song, Ruixia
    COMPUTATIONAL VISUAL MEDIA, 2019, 5 (04) : 391 - 401
  • [45] Single Image Super-Resolution Reconstruction based on the ResNeXt Network
    Fangzhe Nan
    Qingliang Zeng
    Yanni Xing
    Yurong Qian
    Multimedia Tools and Applications, 2020, 79 : 34459 - 34470
  • [46] A lightweight network with bidirectional constraints for single image super-resolution
    Chen, Liangliang
    Guo, Lin
    Cheng, Deqiang
    Kou, Qiqi
    Gao, Rui
    OPTIK, 2021, 239
  • [47] Adaptive deep residual network for single image super-resolution
    Shuai Liu
    Ruipeng Gang
    Chenghua Li
    Ruixia Song
    ComputationalVisualMedia, 2019, 5 (04) : 391 - 401
  • [48] Lightweight group convolutional network for single image super-resolution
    Yang, Aiping
    Yang, Bingwang
    Ji, Zhong
    Pang, Yanwei
    Shao, Ling
    INFORMATION SCIENCES, 2020, 516 : 220 - 233
  • [49] Single image super-resolution via a ternary attention network
    Lianping Yang
    Jian Tang
    Ben Niu
    Haoyue Fu
    Hegui Zhu
    Wuming Jiang
    Xin Wang
    Applied Intelligence, 2023, 53 : 13067 - 13081
  • [50] Recurrent Embedded Hourglass Network for Single Image Super-Resolution
    Liu, Nanyan
    Gao, Guangpu
    Xu, Xinyu
    IEEE ACCESS, 2020, 8 : 166176 - 166183