Fredholm One-Dimensional Boundary-Value Problems with Parameters in Sobolev Spaces

被引:3
作者
Atlasiuk, O. M. [1 ]
Mikhailets, V. A. [1 ]
机构
[1] Ukrainian Natl Acad Sci, Inst Math, Kiev, Ukraine
关键词
D O I
10.1007/s11253-019-01599-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For systems of linear differential equations on a compact interval, we analyze the dependence of the solutions of boundary-value problems in the Sobolev spaces W infinity n on a parameter epsilon. We establish a constructive criterion of continuous dependence of the solutions of these problems on the parameter epsilon for epsilon = 0. The rate of convergence of these solutions is determined.
引用
收藏
页码:1677 / 1687
页数:11
相关论文
共 11 条
[1]   Fredholm One-Dimensional Boundary-Value Problems in Sobolev Spaces [J].
Atlasiuk, O. M. ;
Mikhailets, V. A. .
UKRAINIAN MATHEMATICAL JOURNAL, 2019, 70 (10) :1526-1537
[2]  
Boichuk A.A., 2004, GEN INVERSE OPERATOR
[3]  
Gnyp E. V., 2015, UKR MAT ZH, V67, p[584, 658]
[4]  
Hnyp Y, 2017, ELECTRON J DIFFER EQ
[5]  
Kiguradze I.T., 1987, ITOGI NAUKI TEKH, V30, P3
[6]  
Kiguradze I.T., 1975, Some Singular Boundary Value Problems for Ordinary Differential Equations
[7]   Limit theorems for one-dimensional boundary-value problems [J].
Kodlyuk, T. I. ;
Mikhailets, V. A. ;
Reva, N. V. .
UKRAINIAN MATHEMATICAL JOURNAL, 2013, 65 (01) :77-90
[8]  
Kodlyuk TI., 2013, J. Math. Sci, DOI DOI 10.1007/S10958-013-1272-2
[9]   LIMIT THEOREMS FOR THE SOLUTIONS OF BOUNDARY-VALUE PROBLEMS [J].
Mikhailets, V. A. ;
Pelekhata, O. B. ;
Reva, N. V. .
UKRAINIAN MATHEMATICAL JOURNAL, 2018, 70 (02) :243-251
[10]  
Mikhailets VA., 2015, J. Math. Sci, DOI [10.1007/s10958-014-2205-4, DOI 10.1007/S10958-014-2205-4]