DeepTFactor: A deep learning-based tool for the prediction of transcription factors

被引:65
|
作者
Kim, Gi Bae [1 ,2 ,3 ,4 ,5 ,6 ]
Gao, Ye [7 ,8 ,9 ]
Palsson, Bernhard O. [8 ,9 ,10 ]
Lee, Sang Yup [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, Metab & Biomol Engn Natl Res Lab, BK21 Plus Program, Daejeon 34141, South Korea
[2] Korea Adv Inst Sci & Technol, Syst Metab Engn & Syst Healthcare Cross Generat C, Daejeon 34141, South Korea
[3] Korea Adv Inst Sci & Technol, KAIST Inst BioCentury, Daejeon 34141, South Korea
[4] Korea Adv Inst Sci & Technol, KAIST Inst Artificial Intelligence, Daejeon 34141, South Korea
[5] Korea Adv Inst Sci & Technol, BioProc Engn Res Ctr, Daejeon 34141, South Korea
[6] Korea Adv Inst Sci & Technol, BioInformat Res Ctr, Daejeon 34141, South Korea
[7] Univ Calif San Diego, Div Biol Sci, La Jolla, CA 92093 USA
[8] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[9] Univ Calif San Diego, Bioinformat & Syst Biol Program, La Jolla, CA 92093 USA
[10] Novo Nordisk Fdn Ctr Biosustainabil, DK-2800 Lyngby, Denmark
基金
新加坡国家研究基金会;
关键词
ChIP-exo; deep learning; transcription factor; transcription regulation; y-ome; ESCHERICHIA-COLI; PROTEIN; MODELS;
D O I
10.1073/pnas.2021171118
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A transcription factor (TF) is a sequence-specific DNA-binding protein that modulates the transcription of a set of particular genes, and thus regulates gene expression in the cell. TFs have commonly been predicted by analyzing sequence homology with the DNA-binding domains of TFs already characterized. Thus, TFs that do not show homologies with the reported ones are difficult to predict. Here we report the development of a deep learning-based tool, DeepTFactor, that predicts whether a protein in question is a TF. DeepTFactor uses a convolutional neural network to extract features of a protein. It showed high performance in predicting TFs of both eukaryotic and prokaryotic origins, resulting in F1 scores of 0.8154 and 0.8000, respectively. Analysis of the gradients of prediction score with respect to input suggested that DeepTFactor detects DNA-binding domains and other latent features for TF prediction. DeepTFactor predicted 332 candidate TFs in Escherichia coli K-12 MG1655. Among them, 84 candidate TFs belong to the y-ome, which is a collection of genes that lack experimental evidence of function. We experimentally validated the results of DeepTFactor prediction by further characterizing genome-wide binding sites of three predicted TFs, YqhC, YiaU, and YahB. Furthermore, we made available the list of 4,674,808 TFs predicted from 73,873,012 protein sequences in 48,346 genomes. DeepTFactor will serve as a useful tool for predicting TFs, which is necessary for understanding the regulatory systems of organisms of interest. We provide Deep-TFactor as a stand-alone program, available at https://bitbucket.org/kaistsystemsbiology/deeptfactor.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Deep Learning-Based Advances in Protein Structure Prediction
    Pakhrin, Subash C.
    Shrestha, Bikash
    Adhikari, Badri
    KC, Dukka B.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (11)
  • [22] Deep Learning-Based Channel Prediction With Path Extraction
    Meliha, Mehdi
    Charge, Pascal
    Wang, Yide
    Bouzid, Salah Eddine
    Henry, Christophe
    Bourny, Christophe
    Tomaz, Henrique
    Chen, Yejian
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2025, 14 (03) : 891 - 895
  • [23] An integrated deep learning-based approach for automobile maintenance prediction with GIS data
    Chen, Chong
    Liu, Ying
    Sun, Xianfang
    Di Cairano-Gilfedder, Carla
    Titmus, Scott
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2021, 216
  • [24] Development of a deep learning-based tool to assist wound classification
    Huang, Po -Hsuan
    Pan, Yi -Hsiang
    Luo, Ying -Sheng
    Chen, Yi -Fan
    Lo, Yu -Cheng
    Chen, Trista Pei -Chun
    Perng, Cherng -Kang
    JOURNAL OF PLASTIC RECONSTRUCTIVE AND AESTHETIC SURGERY, 2023, 79 : 89 - 97
  • [25] Deep Learning-Based Short-Term Wind Power Prediction Considering Various Factors
    Qian, Zhonghao
    Wen, Shuli
    Zhang, Liudong
    Zhang, Jun
    Yuan, Song
    Mao, Lei
    Zhou, Liang
    2022 17TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2022, : 529 - 533
  • [26] Progress in Research on Deep Learning-Based Crop Yield Prediction
    Wang, Yuhan
    Zhang, Qian
    Yu, Feng
    Zhang, Na
    Zhang, Xining
    Li, Yuchen
    Wang, Ming
    Zhang, Jinmeng
    AGRONOMY-BASEL, 2024, 14 (10):
  • [27] Deep learning-based inverse mapping for fluence map prediction
    Ma, Lin
    Chen, Mingli
    Gu, Xuejun
    Lu, Weiguo
    PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (23)
  • [28] Exploring Deep Learning-based Branch Prediction for Computer Devices
    Seo, Yeongeun
    Park, Jaehyun
    Ahn, Jung Ho
    Moon, Taesup
    2019 4TH IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - ASIA (IEEE ICCE-ASIA 2019), 2019, : 85 - 87
  • [29] Deep learning-based prediction of effluent quality of a constructed wetland
    Yang, Bowen
    Xiao, Zijie
    Meng, Qingjie
    Yuan, Yuan
    Wang, Wenqian
    Wang, Haoyu
    Wang, Yongmei
    Feng, Xiaochi
    ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY, 2023, 13
  • [30] Deep Learning-based Prediction Method for People Flows and Their Anomalies
    Takano, Shigeru
    Hori, Maiya
    Goto, Takayuki
    Uchida, Seiichi
    Kurazume, Ryo
    Taniguchi, Rin-ichiro
    ICPRAM: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS, 2017, : 676 - 683