Microwave-assisted solvothermal preparation of nitrogen and sulfur co-doped reduced graphene oxide and graphene quantum dots hybrids for highly efficient oxygen reduction

被引:73
|
作者
Luo, Zhimin [1 ]
Yang, Dongliang [1 ]
Qi, Guangqin [1 ]
Shang, Jingzhi [3 ]
Yang, Huanping [4 ]
Wang, Yanlong [3 ]
Yuwen, Lihui [1 ]
Yu, Ting [3 ]
Huang, Wei [1 ,2 ]
Wang, Lianhui [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Jiangsu Key Lab Organ Elect & Informat Displays, Inst Adv Mat, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Tech Univ, Inst Adv Mat, Jiangsu Singapore Joint Res Ctr Organ Bioelect &, Nanjing 211816, Jiangsu, Peoples R China
[3] Nanyang Technol Univ, Div Phys & Appl Phys, Sch Phys & Math Sci, Singapore 637371, Singapore
[4] Zhejiang Univ Sci & Technol, Dept Sci, Hangzhou 310023, Zhejiang, Peoples R China
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
METAL-FREE ELECTROCATALYST; CARBON NANOTUBES; ELECTROCHEMICAL AVENUE; FUNCTIONAL-GROUPS; CATALYST SUPPORT; FUEL-CELLS; NANOCRYSTALS; PERFORMANCE; ELECTRODE; POLYMER;
D O I
10.1039/c4ta05096g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A facile solvothermal method assisted by microwave irradiation was developed for preparing nitrogen and sulfur co-doped reduced graphene oxide functionalized with fluorescent graphene quantum dots (N,S-RGO/GQDs). Graphene quantum dots (GQDs) show high fluorescence and excitation-dependent fluorescent properties. The resultant N, S-RGO/GQDs hybrids as a kind of metal-free electrocatalyst were demonstrated to have good catalytic properties with long-term operational stability and tolerance to the crossover effects of methanol for oxygen reduction via a four-electron pathway in alkaline solution. This research not only develops a low-cost, economic and scalable approach for preparing a metal-free electrocatalyst for the oxygen reduction reaction (ORR), but also produces nitrogen and sulfur co-doped graphene quantum dots (N,S-GQDs) with high fluorescent characteristics.
引用
收藏
页码:20605 / 20611
页数:7
相关论文
共 50 条
  • [1] Preparation of Cobalt Sulfide Nanoparticle-Decorated Nitrogen and Sulfur Co-Doped Reduced Graphene Oxide Aerogel Used as a Highly Efficient Electrocatalyst for Oxygen Reduction Reaction
    Luo, Zhimin
    Tan, Chaoliang
    Zhang, Xiao
    Chen, Junze
    Cao, Xiehong
    Li, Bing
    Zong, Yun
    Huang, Ling
    Huang, Xiao
    Wang, Lianhui
    Huang, Wei
    Zhang, Hua
    SMALL, 2016, 12 (43) : 5920 - 5926
  • [2] Ultrafine Co-doped ZnO nanoparticles on reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction
    Sun, Yao
    Shen, Zichao
    Xin, Shuli
    Ma, Li
    Xiao, Chunhui
    Ding, Shujiang
    Li, Fei
    Gao, Guoxin
    ELECTROCHIMICA ACTA, 2017, 224 : 561 - 570
  • [3] Microwave-assisted polyol preparation of reduced graphene oxide nanoribbons supported platinum as a highly active electrocatalyst for oxygen reduction reaction
    Liang, Jian
    Li, Chuang
    Li, Wenping
    Qi, Ji
    Liang, Changhai
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2018, 48 (09) : 1069 - 1080
  • [4] Nitrogen/sulfur dual-doped reduced graphene oxide supported CuFeS2 as an efficient electrocatalyst for the oxygen reduction reaction
    Zhang, Man
    Hong, Wei
    Xue, Ruinan
    Li, Lingzhi
    Huang, Guanbo
    Xu, Xiaoyang
    Gao, Jianping
    Yan, Jing
    NEW JOURNAL OF CHEMISTRY, 2018, 42 (03) : 2081 - 2088
  • [5] Nitrogen-Doped Graphene Quantum Dots Anchored on Thermally Reduced Graphene Oxide as an Electrocatalyst for the Oxygen Reduction Reaction
    Zhang, Bo
    Xiao, Chunhui
    Xiang, Yang
    Dong, Bitao
    Ding, Shujiang
    Tang, Yuhai
    CHEMELECTROCHEM, 2016, 3 (06): : 864 - 870
  • [6] Facile preparation of nitrogen-doped graphene as an efficient oxygen reduction electrocatalyst
    Gao, Xiaochun
    Wang, Liwei
    Ma, Jizhen
    Wang, Yueqing
    Zhang, Jintao
    INORGANIC CHEMISTRY FRONTIERS, 2017, 4 (09): : 1582 - 1590
  • [7] A Facile Synthesis of Nitrogen/Sulfur Co-Doped Graphene for the Oxygen Reduction Reaction
    Pan, Fuping
    Duan, Youxin
    Zhang, Xinkai
    Zhang, Junyan
    CHEMCATCHEM, 2016, 8 (01) : 163 - 170
  • [8] Soft template-assisted method for synthesis of nitrogen and sulfur co-doped three-dimensional reduced graphene oxide as an efficient metal free catalyst for oxygen reduction reaction
    Li, Yi
    Yang, Juan
    Huang, Jipei
    Zhou, Yazhou
    Xu, Kai
    Zhao, Nan
    Cheng, Xiaonong
    CARBON, 2017, 122 : 237 - 246
  • [9] Nitrogen/sulfur co-doped helical graphene nanoribbons for efficient oxygen reduction in alkaline and acidic electrolytes
    Yazdi, Alireza Zehtab
    Roberts, Edward P. L.
    Sundararaj, Uttandaraman
    CARBON, 2016, 100 : 99 - 108
  • [10] Sulfur and Nitrogen Co-Doped Graphene Quantum Dots as a Fluorescent Quenching Probe for Highly Sensitive Detection toward Mercury Ions
    Gu, Siyong
    Hsieh, Chien-Te
    Tsai, Yi-Yin
    Gandomi, Yasser Ashraf
    Yeom, Sinchul
    Kihm, Kenneth David
    Fu, Chun-Chieh
    Juang, Ruey-Shin
    ACS APPLIED NANO MATERIALS, 2019, 2 (02) : 790 - 798