Quantum dynamics in two- and three-dimensional quasiperiodic tilings

被引:73
作者
Triozon, F
Vidal, J
Mosseri, R
Mayou, D
机构
[1] CNRS, LEPES, F-38042 Grenoble, France
[2] Univ Paris 06, Phys Solides Grp, CNRS, UMR 7588, F-75251 Paris 05, France
[3] Univ Paris 07, Phys Solides Grp, CNRS, UMR 7588, F-75251 Paris 05, France
来源
PHYSICAL REVIEW B | 2002年 / 65卷 / 22期
关键词
D O I
10.1103/PhysRevB.65.220202
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the properties of electronic states in two- and three-dimensional quasiperiodic structures: the generalized Rauzy tilings. Exact diagonalizations, limited to clusters with a few thousands sites, suggest that eigenstates are critical and more extended at the band edges than at the band center. These trends are clearly confirmed when we compute the spreading of energy-filtered wave packets, using an algorithm that allows us to treat systems of about 10(6) sites. The present approach to quantum dynamics, which gives also access to the low-frequency conductivity, opens interesting perspectives in the analyzis of two- and three-dimensional models.
引用
收藏
页码:2202021 / 2202024
页数:4
相关论文
共 24 条
  • [1] Linear scaling electronic structure methods
    Goedecker, S
    [J]. REVIEWS OF MODERN PHYSICS, 1999, 71 (04) : 1085 - 1123
  • [2] GRIMM U, 2000, P 7 INT C QUAS A, V294, P564
  • [3] HAYDOCK R, 1980, SOLID STATE PHYSICS, V35
  • [4] Jagannathan A, 2001, Phys. Rev. B, V64
  • [5] LOCALIZATION PROBLEM IN ONE DIMENSION - MAPPING AND ESCAPE
    KOHMOTO, M
    KADANOFF, LP
    TANG, C
    [J]. PHYSICAL REVIEW LETTERS, 1983, 50 (23) : 1870 - 1872
  • [6] A COMPARISON OF DIFFERENT PROPAGATION SCHEMES FOR THE TIME-DEPENDENT SCHRODINGER-EQUATION
    LEFORESTIER, C
    BISSELING, RH
    CERJAN, C
    FEIT, MD
    FRIESNER, R
    GULDBERG, A
    HAMMERICH, A
    JOLICARD, G
    KARRLEIN, W
    MEYER, HD
    LIPKIN, N
    RONCERO, O
    KOSLOFF, R
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1991, 94 (01) : 59 - 80
  • [7] Generalized Drude formula for the optical conductivity of quasicrystals
    Mayou, D
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (06) : 1290 - 1293
  • [8] ONE-DIMENSIONAL SCHRODINGER-EQUATION WITH AN ALMOST PERIODIC POTENTIAL
    OSTLUND, S
    PANDIT, R
    RAND, D
    SCHELLNHUBER, HJ
    SIGGIA, ED
    [J]. PHYSICAL REVIEW LETTERS, 1983, 50 (23) : 1873 - 1876
  • [9] ANOMALOUS DIFFUSION AND CONDUCTIVITY IN OCTAGONAL TILING MODELS
    PASSARO, B
    SIRE, C
    BENZA, VG
    [J]. PHYSICAL REVIEW B, 1992, 46 (21): : 13751 - 13755
  • [10] Anomalous diffusion properties of wave packets on quasiperiodic chains
    Piechon, F
    [J]. PHYSICAL REVIEW LETTERS, 1996, 76 (23) : 4372 - 4375