Eigenvalue majorization inequalities for positive semidefinite block matrices and their blocks

被引:8
|
作者
Zhang, Yun [1 ,2 ]
机构
[1] Huaibei Normal Univ, Sch Math Sci, Huaibei 235000, Peoples R China
[2] E China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
关键词
Positive semidefinite block matrices; Hermitian matrix; Eigenvalues; Majorization;
D O I
10.1016/j.laa.2013.12.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H = ((M)(K* N) (K)) be a positive semidefinite block matrix with square matrices M and N of the same order and denote i = root-1. The main results are the following eigenvalue majorization inequalities: for any complex number z of modulus 1, lambda(H) < 1/2 lambda ([M + N + i(zK* - <(z)over bar>K)] circle plus O) 1, + 1/2 lambda ([M + N + i((z) over barK - zK*)] circle plus O). If, in addition, K is Hermitian, then for any real number r is an element of [-2, 2], lambda(H) < 1/2 lambda ((M + N + rK) circle plus O) + 1/2 lambda ((M + N - rK) circle plus O) , while if K is skew-Hermitian, then for any real number r is an element of [-2, 2], lambda(H) < 1/2 lambda ((M + N + riK) circle plus O) + 1/2 lambda ((M + N - riK) circle plus O), where O is the zero matrix of compatible size. These majorization inequalities generalize some results due to Furuichi and Lin, Turkmen, Paksoy and Zhang, Lin and Wolkowicz. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:216 / 223
页数:8
相关论文
共 50 条
  • [21] Rank inequalities for positive semidefinite matrices
    Lundquist, M
    Barrett, W
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 248 : 91 - 100
  • [22] Singular Value and Matrix Norm Inequalities between Positive Semidefinite Matrices and Their Blocks
    Zhang, Feng
    Ma, Rong
    Zhang, Chunwen
    Cao, Yuxin
    JOURNAL OF MATHEMATICS, 2024, 2024
  • [23] Norm Inequalities for Positive Semidefinite Matrices
    ZOU Limin1
    2. College of Mathematics and Statistics
    WuhanUniversityJournalofNaturalSciences, 2012, 17 (05) : 454 - 456
  • [24] TRACE AND EIGENVALUE INEQUALITIES FOR ORDINARY AND HADAMARD-PRODUCTS OF POSITIVE SEMIDEFINITE HERMITIAN MATRICES
    WANG, BY
    ZHANG, FZ
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1995, 16 (04) : 1173 - 1183
  • [25] INTERPOLATING INEQUALITIES FOR FUNCTIONS OF POSITIVE SEMIDEFINITE MATRICES
    Al-Natoor, Ahmad
    Hirzallah, Omar
    Kittaneh, Fuad
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2018, 12 (04): : 955 - 969
  • [26] SINGULAR VALUE INEQUALITIES FOR POSITIVE SEMIDEFINITE MATRICES
    Zou, L.
    Jiang, Y.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2014, 40 (03) : 631 - 638
  • [27] Further norm inequalities for positive semidefinite matrices
    Kittaneh, Fuad
    Matharu, Jagjit Singh
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (04) : 3281 - 3289
  • [28] Positive Semidefinite Matrices, Exponential Convexity for Majorization, and Related Cauchy Means
    Anwar, M.
    Latif, N.
    Pecaric, J.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
  • [29] Positive Semidefinite Matrices, Exponential Convexity for Majorization, and Related Cauchy Means
    M Anwar
    N Latif
    J Pečarić
    Journal of Inequalities and Applications, 2010
  • [30] Trace inequalities for positive semidefinite matrices with centrosymmetric structure
    Di Zhao
    Hongyi Li
    Zhiguo Gong
    Journal of Inequalities and Applications, 2012