Incorporation ZnS quantum dots into carbon nanotubes for high-performance lithium-sulfur batteries

被引:13
|
作者
Shi, Tianyu [1 ]
Zhao, Chenyuan [1 ]
Yin, Chuan [1 ]
Yin, Haihong [1 ]
Song, Changqing [1 ]
Qin, Lin [1 ]
Wang, Zhiliang [1 ]
Shao, Haibao [1 ]
Yu, Ke [2 ]
机构
[1] Nantong Univ, Sch Informat Sci & Technol, Nantong 226019, Peoples R China
[2] East China Normal Univ, Dept Optoelect, Key Lab Polar Mat & Devices, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
multifunctional hosts; lithium-sulfur batteries; quantum dots; metal sulfides; MESOPOROUS CARBON; REDOX KINETICS; NANOPARTICLES; POLYSULFIDE; GRAPHENE; STORAGE; COMPOSITE; CATHODE; GROWTH; HOSTS;
D O I
10.1088/1361-6528/abb490
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Constructing sulfur hosts with high electronic conductivity, large void space, strong chemisorption, and rapid redox kinetics is critically important for their practical applications in lithium-sulfur batteries (LSBs). Herein, by coupling ZnS quantum dots (QDs) with carbon nanotubes (CNTs), one multifunctional sulfur host CNT/ZnS-QDs is designed via a facile one-step hydrothermal method. SEM and TEM analyses reveal that small ZnS-QDs (<5 nm) are uniformly anchored on the CNT surface as well as encapsulated into CNT channels. This special architecture ensures sulfur direct contacting with highly conductive CNTs; meanwhile, the catalytic effect of anchored ZnS-QDs improves the chemisorption and confinement to polysulfides. Benefiting from these merits, when used as sulfur hosts, this special architecture manifests a high specific capacity, superior rate capability, and long-term cycling stability. The ZnS-QDs dependent electrochemical performance is also evaluated by adjusting the mass ratio of ZnS-QDs, and the host of CNT/ZnS-QDs 27% owns the optimal cell performance. The specific capacity decreases from 1051 mAh g(-1)at 0.2 C to 544 mAh g(-1)at 2.0 C, showing rate capability much higher than CNT/S and other CNT/ZnS-QDs/S samples. After 150 cycles, the cyclic capacity at 0.5 C exhibits a slow reduction from 1051 mAh g(-1)to 771 mAh g(-1), showing a high retention of 73.4% with a coulombic efficiency of over 99%. The electrochemical impedance spectroscopy analyses demonstrate that this special architecture juggles high conductivity and excellent confinement of polysulfides, which can significantly suppress the notorious shuttle effect and accelerate the redox kinetics. The strategy in this study provides a feasible approach to design efficient sulfur hosts for realizing practically usable LSBs.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] RuOx Quantum Dots Loaded on Graphdiyne for High-Performance Lithium-Sulfur Batteries
    Wang, Zhongqiang
    Song, Congying
    Shen, Han
    Ma, Shaobo
    Li, Guoxing
    Li, Yuliang
    ADVANCED MATERIALS, 2024, 36 (09)
  • [2] Greenly growing carbon nanotubes on graphene for high-performance lithium-sulfur batteries
    Zhou, Yucheng
    Chen, Ruoxi
    Gao, Zan
    He, Jiajun
    Li, Xiaodong
    MATERIALS TODAY ENERGY, 2023, 37
  • [3] Covalent bonding of sulfur nanoparticles to unzipped multiwalled carbon nanotubes for high-performance lithium-sulfur batteries
    Qi, Siqi
    Sun, Jinhua
    Ma, Junpeng
    Sun, Yue
    Goossens, Karel
    Li, Hui
    Jia, Pan
    Fan, Xueying
    Bielawski, Christopher W.
    Geng, Jianxin
    NANOTECHNOLOGY, 2019, 30 (02)
  • [4] Aminomethyl-Functionalized Carbon Nanotubes as a Host of Small Sulfur Clusters for High-Performance Lithium-Sulfur Batteries
    Li, Fen
    Tao, Jiayou
    Zou, Zhijun
    Li, Chang
    Hou, Zhaohui
    Zhao, Jijun
    CHEMSUSCHEM, 2020, 13 (10) : 2761 - 2768
  • [5] Advances in High-Performance Lithium-Sulfur Batteries
    Liu Shuai
    Yao Lu
    Zhang Qin
    Li Lu-Lu
    Hu Nan-Tao
    Wei Liang-Ming
    Wei Hao
    ACTA PHYSICO-CHIMICA SINICA, 2017, 33 (12) : 2339 - 2358
  • [6] Fabrication of NiFe-LDHs Modified Carbon Nanotubes as the High-Performance Sulfur Host for Lithium-Sulfur Batteries
    Zhang, Lingwei
    Li, Runlan
    Yue, Wenbo
    NANOMATERIALS, 2024, 14 (03)
  • [7] Multi-functional ZnS quantum Dots/Graphene aerogel modified separator for high performance lithium-sulfur batteries
    Liu, Zhaoen
    Hu, Zewei
    Jiang, Xueao
    Zhang, Yan
    Wang, Xiwen
    Zhang, Shiguo
    ELECTROCHIMICA ACTA, 2022, 422
  • [8] Sulfur quantum dots wrapped by conductive polymer shell with internal void spaces for high-performance lithium-sulfur batteries
    Huang, Ling
    Cheng, Jianli
    Li, Xiaodong
    Yuan, Demao
    Ni, Wei
    Qu, Guoxing
    Guan, Qun
    Zhang, Yun
    Wang, Bin
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (07) : 4049 - 4057
  • [9] Enhanced Adsorption of Polysulfides on Carbon Nanotubes/Boron Nitride Fibers for High-Performance Lithium-Sulfur Batteries
    Li, Mengyuan
    Fu, Kun
    Wang, Zhixuan
    Cao, Chaochao
    Yang, Jingwen
    Zhai, Qinghong
    Zhou, Zheng
    Ji, Jiawei
    Xue, Yanming
    Tang, Chengchun
    CHEMISTRY-A EUROPEAN JOURNAL, 2020, 26 (72) : 17567 - 17573
  • [10] CuS quantum dot modified carbon aerogel as an immobilizer for lithium polysulfides for high-performance lithium-sulfur batteries
    Li, Xueliang
    Hu, Kuan
    Tang, Ruwen
    Zhao, Kun
    Ding, Yunsheng
    RSC ADVANCES, 2016, 6 (75): : 71319 - 71327