Harmonic Bergman functions on the unit ball in Rn

被引:43
作者
Jevtic, M [1 ]
Pavlovic, M [1 ]
机构
[1] Matemat Fak, YU-11000 Belgrade, Yugoslavia
关键词
D O I
10.1023/A:1006620929091
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study harmonic Bergman functions on the unit ball B in R-n Among our main results are: For the Bergman kernel K-alpha (x, y) of the orthogonal projection P-alpha of L-2,L-alpha-1 onto the harmonic Bergman space l(2,alpha-1) the following estimate holds: \K-alpha(x, y)\ = O(\x - y\(-n+1-alpha)), x is an element of B, y is an element of partial derivative B. The Bergman projection P-alpha is bounded for the range 1 < p < infinity. Also, P-alpha maps L-infinity onto the harmonic Bloch space B-infinity and C-0(B) onto the little harmonic Bloch space B-infinity. The duals of the harmonic Bergman spaces l(p,alpha-1) are calculated for all p > 0 and alpha > 0.
引用
收藏
页码:81 / 96
页数:16
相关论文
共 7 条