A fractional order PID tuning algorithm for a class of fractional order plants

被引:0
作者
Zhao, Chunna [1 ]
Xue, Dingyu [1 ]
Chen, YangQuan [1 ]
机构
[1] Northeastern Univ, Fac Informat Sci & Engn, Shenyang 110004, Peoples R China
来源
2005 IEEE International Conference on Mechatronics and Automations, Vols 1-4, Conference Proceedings | 2005年
关键词
fractional order calculus; fractional order controller; fractional order systems; (PID mu)-D-lambda controller;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fractional order dynamic model could model various real materials more adequately than integer order ones and provide a more adequate description of many actual dynamical processes. Fractional order controller is naturally suitable for these fractional order models. In this paper, a fractional order PID controller design method is proposed for a class of fractional order system models. Better performance using fractional order PED controllers can be achieved and is demonstrated through two examples with a comparison to the classical integer order PID controllers for controlling fractional order systems.
引用
收藏
页码:216 / 221
页数:6
相关论文
共 50 条
  • [1] Tuning and Application of Fractional Order PID Controllers
    Yan, Zhe
    Li, Kai
    Song, Changqi
    He, Jing
    Li, Yingyan
    PROCEEDINGS OF 2013 2ND INTERNATIONAL CONFERENCE ON MEASUREMENT, INFORMATION AND CONTROL (ICMIC 2013), VOLS 1 & 2, 2013, : 955 - 958
  • [2] An algorithm for stabilization of fractional-order time delay systems using fractional-order PID controllers
    Hamamci, Serdar Ethem
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (10) : 1964 - 1969
  • [3] Tuning of optimal fractional-order PID controller using an artificial bee colony algorithm
    Kesarkar, Ameya Anil
    Selvaganesan, N.
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2015, 3 (01): : 99 - 105
  • [4] A Simple Frequency-domain Tuning Method of Fractional-order PID Controllers for Fractional-order Delay Systems
    Li, Xu
    Gao, Lifu
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2022, 20 (07) : 2159 - 2168
  • [5] Design of an enhanced fractional order PID controller for a class of second-order system
    Kanagaraj, N.
    Jha, Vishwa Nath
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2021, 40 (03) : 579 - 592
  • [6] A Simple Frequency-domain Tuning Method of Fractional-order PID Controllers for Fractional-order Delay Systems
    Xu Li
    Lifu Gao
    International Journal of Control, Automation and Systems, 2022, 20 : 2159 - 2168
  • [7] Fractional Order Robust Controller for Fractional-Order Interval Plants
    Mihaly, Vlad
    Susca, Mircea
    Dulf, Eva H.
    Morar, Dora
    Dobra, Petru
    IFAC PAPERSONLINE, 2022, 55 (25): : 151 - 156
  • [8] Comments on "An Algorithm for Stabilization of Fractional-Order Time Delay Systems Using Fractional-Order PID Controllers"
    Hohenbichler, Norbert
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 (11) : 2712 - 2712
  • [9] Design of Non-overshooting Fractional-Order PD and PID Controllers for Special Case of Fractional-Order Plants
    Hamid Safikhani Mohammadzadeh
    Mohammad Tabatabaei
    Journal of Control, Automation and Electrical Systems, 2019, 30 : 611 - 621
  • [10] Design of Non-overshooting Fractional-Order PD and PID Controllers for Special Case of Fractional-Order Plants
    Mohammadzadeh, Hamid Safikhani
    Tabatabaei, Mohammad
    JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS, 2019, 30 (05) : 611 - 621