Impact of segregation energetics on oxygen conductivity at ionic grain boundaries

被引:31
作者
Aidhy, Dilpuneet S. [1 ]
Zhang, Yanwen [1 ,2 ]
Weber, William J. [1 ,2 ]
机构
[1] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
[2] Univ Tennessee, Knoxville, TN 37996 USA
关键词
YTTRIA-STABILIZED ZIRCONIA; DIFFUSION; TRANSPORT; INTERFACES; BLOCKING; DEFECTS; CERIA;
D O I
10.1039/c3ta14128d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In pursuit of whether nanocrystallinity could lead to higher anion conductivity, research has revealed contradicting results exposing the limited understanding of point defect energetics at grain boundaries (GBs)/interfaces. By disentangling and addressing key GB energetics issues related to segregation, migration and binding energies of oxygen vacancies in the presence and absence of dopants at the GBs, as well as the segregation energetics of dopants, we use atomistic simulations of doped nanocrystalline ceria to elucidate that dopant segregation is the key factor leading to degradation of oxygen conductivity in nanocrystalline materials. A framework for designing enhanced conducting nanocrystalline materials is proposed where the focus of doping strategies shifts from the bulk to segregation at GBs.
引用
收藏
页码:1704 / 1709
页数:6
相关论文
共 42 条
[1]   Optimization of ionic conductivity in doped ceria [J].
Andersson, DA ;
Simak, SI ;
Skorodumova, NV ;
Abrikosov, IA ;
Johansson, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (10) :3518-3521
[2]   A mechanism for the fast ionic transport in nanostructured oxide-ion solid electrolytes [J].
Bellino, Martin G. ;
Lamas, Diego G. ;
de Reca, Noemi E. Walse .
ADVANCED MATERIALS, 2006, 18 (22) :3005-+
[3]   Defect ordering in aliovalently doped cubic zirconia from first principles [J].
Bogicevic, A ;
Wolverton, C ;
Crosbie, GM ;
Stechel, EB .
PHYSICAL REVIEW B, 2001, 64 (01)
[4]  
Busker G, 1999, J AM CERAM SOC, V82, P1553, DOI 10.1111/j.1151-2916.1999.tb01954.x
[5]   Oxygen diffusion in nanocrystalline yttria-stabilized zirconia: the effect of grain boundaries [J].
De Souza, Roger A. ;
Pietrowski, Martha J. ;
Anselmi-Tamburini, Umberto ;
Kim, Sangtae ;
Munir, Zuhair A. ;
Martin, Manfred .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (15) :2067-2072
[6]   Is diffusion creep the cause for the inverse Hall-Petch effect in nanocrystalline materials? [J].
Desai, T. G. ;
Millett, P. ;
Wolf, D. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 493 (1-2) :41-47
[7]   Computer simulation of defects and oxygen transport in yttria-stabilized zirconia [J].
Devanathan, R. ;
Weber, W. J. ;
Singhal, S. C. ;
Gale, J. D. .
SOLID STATE IONICS, 2006, 177 (15-16) :1251-1258
[8]   Oxygen vacancy migration in ceria and Pr-doped ceria: A DFT plus U study [J].
Dholabhai, Pratik P. ;
Adams, James B. ;
Crozier, Peter ;
Sharma, Renu .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (09)
[9]  
Dickey EC, 2001, J AM CERAM SOC, V84, P1361, DOI 10.1111/j.1151-2916.2001.tb00842.x
[10]   Oxide ion diffusion along grain boundaries in zirconia: A molecular dynamics study [J].
Fisher, CAJ ;
Matsubara, H .
SOLID STATE IONICS, 1998, 113 :311-318