n-Mode Singular Vector Selection in Higher-Order Singular Value Decomposition

被引:1
|
作者
Inoue, Kohei [1 ]
Urahama, Kiichi [1 ]
机构
[1] Kyushu Univ, Fac Design, Fukuoka 8158540, Japan
关键词
dimensionality reduction; higher-order singular value decomposition; n-mode singular vector;
D O I
10.1093/ietfec/e91-a.11.3380
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a method for selecting n-mode singular vectors in higher-order singular value decomposition. We select the minimum number of n-mode singular vectors, when the upper bound of a least-squares cost function is thresholded. The reduced n-ranks of all modes of a given tensor are determined automatically and the tensor is represented with the minimum number of dimensions. We apply the selection method to simultaneous low rank approximation of matrices. Experimental results show the effectiveness of the n-mode singular vector selection method.
引用
收藏
页码:3380 / 3384
页数:5
相关论文
共 50 条
  • [1] A NEW TRUNCATION STRATEGY FOR THE HIGHER-ORDER SINGULAR VALUE DECOMPOSITION
    Vannieuwenhoven, Nick
    Vandebril, Raf
    Meerbergen, Karl
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (02): : A1027 - A1052
  • [2] An Iterative Method for Tensor Inpainting Based on Higher-Order Singular Value Decomposition
    Yeganli, S. F.
    Yu, R.
    Demirel, H.
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (09) : 3827 - 3841
  • [3] Higher-order singular value decomposition and the reduced density matrices of three qubits
    Choong, Pak Shen
    Zainuddin, Hishamuddin
    Chan, Kar Tim
    Husain, Sh. K. Said
    QUANTUM INFORMATION PROCESSING, 2020, 19 (09)
  • [4] Higher-order singular value decomposition and the reduced density matrices of three qubits
    Pak Shen Choong
    Hishamuddin Zainuddin
    Kar Tim Chan
    Sh. K. Said Husain
    Quantum Information Processing, 2020, 19
  • [5] An Iterative Method for Tensor Inpainting Based on Higher-Order Singular Value Decomposition
    S. F. Yeganli
    R. Yu
    H. Demirel
    Circuits, Systems, and Signal Processing, 2018, 37 : 3827 - 3841
  • [6] On Robust Computation of Tensor Classifiers Based on the Higher-Order Singular Value Decomposition
    Cyganek, Boguslaw
    Wozniak, Michal
    SOFTWARE ENGINEERING PERSPECTIVES AND APPLICATION IN INTELLIGENT SYSTEMS, VOL 2, 2016, 465 : 193 - 201
  • [7] Higher order singular value decomposition in quantum chemistry
    Bell, F.
    Lambrecht, D. S.
    Head-Gordon, M.
    MOLECULAR PHYSICS, 2010, 108 (19-20) : 2759 - 2773
  • [8] TP MODEL TRANSFORMATION VIA SEQUENTIALLY TRUNCATED HIGHER-ORDER SINGULAR VALUE DECOMPOSITION
    Pan, Junjun
    Lu, Linzhang
    ASIAN JOURNAL OF CONTROL, 2015, 17 (02) : 467 - 475
  • [9] Higher-order singular value decomposition-based lung parcellation for breathing motion management
    Chowdhury, Samadrita Roy
    Dutta, Joyita
    JOURNAL OF MEDICAL IMAGING, 2019, 6 (02)
  • [10] An Ultrasonic Reverse Time Migration Imaging Method Based on Higher-Order Singular Value Decomposition
    Zhang, Yuncheng
    Gao, Xiang
    Zhang, Jiawei
    Jiao, Jingpin
    SENSORS, 2022, 22 (07)