THE COHOMOLOGY GROUPS OF REAL TORIC VARIETIES ASSOCIATED WITH WEYL CHAMBERS OF TYPES C AND D

被引:2
作者
Choi, Suyoung [1 ]
Kaji, Shizuo [2 ]
Park, Hanchul [3 ]
机构
[1] Ajou Univ, Dept Math, 206 World Cup Ro, Suwon 16499, South Korea
[2] Kyushu Univ, Inst Math Ind, Nishi Ku, 744 Motooka, Fukuoka, Fukuoka 8190395, Japan
[3] Jeju Natl Univ, Dept Math Educ, 102 Jejudaehak Ro, Jeju Si 63243, Jeju Province, South Korea
基金
新加坡国家研究基金会;
关键词
real toric variety; cohomology; root system; Weyl chamber; poset topology; generalized Euler number;
D O I
10.1017/S001309151800086X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a root system, the Weyl chambers in the co-weight lattice give rise to a real toric variety, called the real toric variety associated with the Weyl chambers. We compute the integral cohomology groups of real toric varieties associated with the Weyl chambers of type C-n and D-n, completing the computation for all classical types.
引用
收藏
页码:861 / 874
页数:14
相关论文
共 16 条
[1]  
Abe H, 2015, ELECTRON J COMB, V22
[2]  
[Anonymous], The On-Line Encyclopedia of Integer Sequences-A338706-Number of 2-linear trees on n nodes
[3]  
Cai L., 2016, ARXIV160406988
[4]  
CHO S., 2017, ARXIV170408591
[5]  
CHOI S., CHINESE ANN MATH B
[6]   On the cohomology and their torsion of real toric objects [J].
Choi, Suyoung ;
Park, Hanchul .
FORUM MATHEMATICUM, 2017, 29 (03) :543-553
[7]   A new graph invariant arises in toric topology [J].
Choi, Suyoung ;
Park, Hanchul .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2015, 67 (02) :699-720
[8]   CONVEX POLYTOPES, COXETER ORBIFOLDS AND TORUS ACTIONS [J].
DAVIS, MW ;
JANUSZKIEWICZ, T .
DUKE MATHEMATICAL JOURNAL, 1991, 62 (02) :417-451
[9]   A CHARACTER FORMULA FOR THE REPRESENTATION OF A WEYL GROUP IN THE COHOMOLOGY OF THE ASSOCIATED TORIC VARIETY [J].
DOLGACHEV, I ;
LUNTS, V .
JOURNAL OF ALGEBRA, 1994, 168 (03) :741-772
[10]  
Henderson A, 2012, CRM SER, V14, P313