Electrostatically confined trilayer graphene quantum dots

被引:6
作者
Mirzakhani, M. [1 ,2 ]
Zarenia, M. [1 ]
Vasilopoulos, P. [3 ]
Peeters, F. M. [1 ]
机构
[1] Univ Antwerp, Dept Phys, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
[2] Damghan Univ, Sch Phys, POB 36716-41167, Damghan, Iran
[3] Concordia Univ, Dept Phys, 7141 Sherbrooke West, Montreal, PQ H4B 1R6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
TUNABLE BAND-GAP; LAYER GRAPHENE; TRANSPORT; ELECTRONS; ABC;
D O I
10.1103/PhysRevB.95.155434
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electrically gating of trilayer graphene (TLG) opens a band gap offering the possibility to electrically engineer TLG quantum dots. We study the energy levels of such quantum dots and investigate their dependence on a perpendicular magnetic field B and different types of stacking of the graphene layers. The dots are modeled as circular and confined by a truncated parabolic potential which can be realized by nanostructured gates or position-dependent doping. The energy spectra exhibit the intervalley symmetry E-K(e) (m) = -E (h)(K') (m) for the electron (e) and hole (h) states, where m is the angular momentum quantum number and K and K' label the two valleys. The electron and hole spectra for B = 0 are twofold degenerate due to the intervalley symmetry E-K (m) = E-K' [-(m + 1)]. For both ABC [alpha = 1.5 (1.2) for large (small) R] and ABA (alpha = 1) stackings, the lowest-energy levels show approximately a R-alpha dependence on the dot radius R in contrast with the 1/R-3 one for ABC-stacked dots with infinite-mass boundary. As functions of the field B, the oscillator strengths for dipole-allowed transitions differ drastically for the two types of stackings.
引用
收藏
页数:9
相关论文
共 54 条
  • [1] Gate-defined quantum confinement in suspended bilayer graphene
    Allen, M. T.
    Martin, J.
    Yacoby, A.
    [J]. NATURE COMMUNICATIONS, 2012, 3
  • [2] Stacking order dependent electric field tuning of the band gap in graphene multilayers
    Avetisyan, A. A.
    Partoens, B.
    Peeters, F. M.
    [J]. PHYSICAL REVIEW B, 2010, 81 (11)
  • [3] Bao W, 2011, NAT PHYS, V7, P948, DOI [10.1038/NPHYS2103, 10.1038/nphys2103]
  • [4] Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics
    Berger, C
    Song, ZM
    Li, TB
    Li, XB
    Ogbazghi, AY
    Feng, R
    Dai, ZT
    Marchenkov, AN
    Conrad, EH
    First, PN
    de Heer, WA
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) : 19912 - 19916
  • [5] Fock-Darwin states of dirac electrons in graphene-based artificial atoms
    Chen, Hong-Yi
    Apalkov, Vadim
    Chakraborty, Tapash
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (18)
  • [6] Craciun MF, 2009, NAT NANOTECHNOL, V4, P383, DOI [10.1038/NNANO.2009.89, 10.1038/nnano.2009.89]
  • [7] Analytical study of the energy levels in bilayer graphene quantum dots
    da Costa, D. R.
    Zarenia, M.
    Chaves, Andrey
    Farias, G. A.
    Peeters, F. M.
    [J]. CARBON, 2014, 78 : 392 - 400
  • [8] INTERCALATION COMPOUNDS OF GRAPHITE
    DRESSELHAUS, MS
    DRESSELHAUS, G
    [J]. ADVANCES IN PHYSICS, 1981, 30 (02) : 139 - 326
  • [9] Raman spectrum of graphene and graphene layers
    Ferrari, A. C.
    Meyer, J. C.
    Scardaci, V.
    Casiraghi, C.
    Lazzeri, M.
    Mauri, F.
    Piscanec, S.
    Jiang, D.
    Novoselov, K. S.
    Roth, S.
    Geim, A. K.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (18)
  • [10] Electrostatically Confined Monolayer Graphene Quantum Dots with Orbital and Valley Splittings
    Freitag, Nils M.
    Chizhova, Larisa A.
    Nemes-Incze, Peter
    Woods, Colin R.
    Gorbachev, Roman V.
    Cao, Yang
    Geim, Andre K.
    Novoselov, Kostya S.
    Burgdoerfer, Joachim
    Libisch, Florian
    Morgenstern, Markus
    [J]. NANO LETTERS, 2016, 16 (09) : 5798 - 5805