Weighted Statistic in Detecting Faint and Sparse Alternatives for High-Dimensional Covariance Matrices

被引:13
|
作者
Yang, Qing [1 ]
Pan, Guangming [1 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
关键词
Empirical spectral distribution; Faint alternative; Large random matrix theory; Linear spectral statistic; Sparse alternative; Stieltjes transform; LIKELIHOOD RATIO TESTS; NORMAL-DISTRIBUTIONS; EQUALITY;
D O I
10.1080/01621459.2015.1122602
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article considers testing equality of two population covariance matrices when the data dimension p diverges with the sample size n (p/n c > 0). We propose a weighted test statistic that is data-driven and powerful in both faint alternatives (many small disturbances) and sparse alternatives (several large disturbances). Its asymptotic null distribution is derived by large random matrix theory without assuming the existence of a limiting cumulative distribution function of the population covariance matrix. The simulation results confirm that our statistic is powerful against all alternatives, while other tests given in the literature fail in at least one situation. Supplementary materials for this article are available online.
引用
收藏
页码:188 / 200
页数:13
相关论文
共 50 条
  • [1] Nonasymptotic support recovery for high-dimensional sparse covariance matrices
    Kashlak, Adam B.
    Kong, Linglong
    STAT, 2021, 10 (01):
  • [2] HIGH-DIMENSIONAL SPARSE BAYESIAN LEARNING WITHOUT COVARIANCE MATRICES
    Lin, Alexander
    Song, Andrew H.
    Bilgic, Berkin
    Ba, Demba
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 1511 - 1515
  • [3] Lower bound estimation for a family of high-dimensional sparse covariance matrices
    Li, Huimin
    Liu, Youming
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2024, 22 (02)
  • [4] Optimal estimation of high-dimensional sparse covariance matrices with missing data
    Miao, Li
    Wang, Jinru
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024,
  • [5] Tests for High-Dimensional Covariance Matrices
    Chen, Song Xi
    Zhang, Li-Xin
    Zhong, Ping-Shou
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (490) : 810 - 819
  • [6] Tests for high-dimensional covariance matrices
    Chen, Jing
    Wang, Xiaoyi
    Zheng, Shurong
    Liu, Baisen
    Shi, Ning-Zhong
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2020, 9 (03)
  • [7] Sparse Estimation of High-Dimensional Inverse Covariance Matrices with Explicit Eigenvalue Constraints
    Yun-Hai Xiao
    Pei-Li Li
    Sha Lu
    Journal of the Operations Research Society of China, 2021, 9 : 543 - 568
  • [8] Minimax optimal estimation of high-dimensional sparse covariance matrices with missing data
    Qi, Xinyu
    Wang, Jinru
    Zeng, Xiaochen
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2022, 20 (06)
  • [9] Sparse Estimation of High-Dimensional Inverse Covariance Matrices with Explicit Eigenvalue Constraints
    Xiao, Yun-Hai
    Li, Pei-Li
    Lu, Sha
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2021, 9 (03) : 543 - 568
  • [10] TESTING HIGH-DIMENSIONAL COVARIANCE MATRICES, WITH APPLICATION TO DETECTING SCHIZOPHRENIA RISK GENES
    Zhu, Lingxue
    Lei, Jing
    Devlin, Bernie
    Roeder, Kathryn
    ANNALS OF APPLIED STATISTICS, 2017, 11 (03): : 1810 - 1831