Game Theory-Based Control System Algorithms with Real-Time Reinforcement Learning HOW TO SOLVE MULTIPLAYER GAMES ONLINE

被引:136
作者
Vamvoudakis, Kyriakos G. [1 ]
Modares, Hamidreza [2 ]
Kiumarsi, Bahare [3 ]
Lewis, Frank L. [4 ,5 ]
机构
[1] Virginia Tech, Dept Aerosp & Ocean Engn, Blacksburg, VA 24061 USA
[2] Missouri Univ Sci & Technol, Rolla, MO USA
[3] Univ Texas Arlington, Arlington, TX 76019 USA
[4] Univ Texas Arlington, Res Inst, Ft Worth, TX USA
[5] Northeastern Univ, Shenyang, Peoples R China
来源
IEEE CONTROL SYSTEMS MAGAZINE | 2017年 / 37卷 / 01期
关键词
OPTIMAL TRACKING CONTROL; ZERO-SUM GAMES; STACKELBERG STRATEGY; FEEDBACK; EQUATION;
D O I
10.1109/MCS.2016.2621461
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Complex human-engineered systems involve an interconnection of multiple decision makers (or agents) whose collective behavior depends on a compilation of local decisions that are based on partial information about each other and the state of the environment [1]-[4]. Strategic interactions among agents in these systems can be modeled as a multiplayer simultaneous-move game [5]-[8]. The agents involved can have conflicting objectives, and it is natural to make decisions based upon optimizing individual payoffs or costs. © 2016 IEEE.
引用
收藏
页码:33 / 52
页数:20
相关论文
共 66 条
[1]   Model-free Q-learning designs for linear discrete-time zero-sum games with application to H-infinity control [J].
Al-Tamimi, Asma ;
Lewis, Frank L. ;
Abu-Khalaf, Murad .
AUTOMATICA, 2007, 43 (03) :473-481
[2]  
Alpcan T., 2010, Network Security: A Decision and Game-Theoretic Approach
[3]  
Arthur W.B., 1997, The economy as an evolving complex system II, V28
[4]   TEAM-OPTIMAL CLOSED-LOOP STACKELBERG STRATEGIES IN HIERARCHICAL CONTROL-PROBLEMS [J].
BASAR, T ;
OLSDER, GJ .
AUTOMATICA, 1980, 16 (04) :409-414
[5]  
Basar T., 1995, Dynamic noncooperative game theory, V200
[7]  
Bernhard P., 1995, H-optimal control and related minimax design problems, V2nd
[8]  
Bertsekas D. P., 1996, NEURODYNAMIC PROGRAM
[9]   A novel actor-critic-identifier architecture for approximate optimal control of uncertain nonlinear systems [J].
Bhasin, S. ;
Kamalapurkar, R. ;
Johnson, M. ;
Vamvoudakis, K. G. ;
Lewis, F. L. ;
Dixon, W. E. .
AUTOMATICA, 2013, 49 (01) :82-92
[10]  
BRADTKE SJ, 1994, PROCEEDINGS OF THE 1994 AMERICAN CONTROL CONFERENCE, VOLS 1-3, P3475