Infinitely Many Solutions for Generalized Quasilinear Schrodinger Equations with a Finite Potential Well

被引:3
作者
Shi, Hongxia [1 ]
Chen, Haibo [2 ]
机构
[1] Hunan First Normal Univ, Sch Math & Computat Sci, Changsha 410205, Hunan, Peoples R China
[2] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
来源
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY | 2018年 / 44卷 / 03期
基金
中国国家自然科学基金;
关键词
Generalized quasilinear Schrodinger equations; Finite depth potential well; Perturbation methods; SOLITON-SOLUTIONS; CRITICAL GROWTH; FRACTIONAL EQUATIONS; PERTURBATION METHOD; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; WEAK SOLUTIONS; EXISTENCE; PARAMETER; PLASMA;
D O I
10.1007/s41980-018-0044-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper focuses on the following generalized quasilinear Schrodinger equations: div( g2 (u). u) + g(u) g (u)|. u| 2 + V(x) u = f (x, u), x. RN where and is an even differential function. By using the methods of perturbation and the Mountain Pass Theorem, we obtain the existence and multiplicity of bound state solutions for this problem with a finite depth potential well, extending the recent results from the literature.
引用
收藏
页码:691 / 705
页数:15
相关论文
共 31 条
[1]  
[Anonymous], 1986, CBMS REG C SER MATH
[2]  
Bisci GM, 2014, ADV NONLINEAR STUD, V14, P619
[3]  
Bisci GM, 2014, MATH RES LETT, V21, P241
[4]   Higher nonlocal problems with bounded potential [J].
Bisci, Giovanni Molica ;
Repovs, Dusan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 420 (01) :167-176
[5]  
Borovskii A. V., 1993, Journal of Experimental and Theoretical Physics, V77, P562
[6]   RELATIVISTIC AND PONDEROMOTIVE SELF-FOCUSING OF A LASER-BEAM IN A RADIALLY INHOMOGENEOUS-PLASMA .1. PARAXIAL APPROXIMATION [J].
BRANDI, HS ;
MANUS, C ;
MAINFRAY, G ;
LEHNER, T ;
BONNAUD, G .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1993, 5 (10) :3539-3550
[7]   NECESSARY AND SUFFICIENT CONDITIONS FOR SELF-FOCUSING OF SHORT ULTRAINTENSE LASER-PULSE IN UNDERDENSE PLASMA [J].
CHEN, XL ;
SUDAN, RN .
PHYSICAL REVIEW LETTERS, 1993, 70 (14) :2082-2085
[8]   Solutions for a quasilinear Schrodinger equation: a dual approach [J].
Colin, M ;
Jeanjean, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (02) :213-226
[9]   Critical exponents and solitary wave solutions for generalized quasilinear Schrodinger equations [J].
Deng, Yinbin ;
Peng, Shuangjie ;
Yan, Shusen .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (02) :1228-1262
[10]   Positive soliton solutions for generalized quasilinear Schrodinger equations with critical growth [J].
Deng, Yinbin ;
Peng, Shuangjie ;
Yan, Shusen .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (01) :115-147