Picosecond transient thermoreflectance for thermal conductivity characterization

被引:21
作者
Jeong, Jihoon [1 ]
Meng, Xianghai [1 ]
Rockwell, Ann Kathryn [2 ]
Bank, Seth R. [2 ]
Hsieh, Wen-Pin [3 ]
Lin, Jung-Fu [4 ,5 ]
Wang, Yaguo [1 ,5 ]
机构
[1] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA
[3] Acad Sinica, Inst Earth Sci, Taipei, Taiwan
[4] Univ Texas Austin, Jackson Sch Geosci, Austin, TX 78712 USA
[5] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
Thermoreflectance; cross-plane thermal conductivity; interfacial thermal conductance; picosecond; HEAT-FLOW; CONDUCTANCE; ALLOYS; PROBE;
D O I
10.1080/15567265.2019.1580807
中图分类号
O414.1 [热力学];
学科分类号
摘要
We developed a picosecond transient thermoreflectance (ps-TTR) system for thermal property characterization, using a low-repetition-rate picosecond pulsed laser (1064 nm) as the heating source and a 532 nm CW laser as the probe. Low-repetition-rate pump eliminates the complication from thermal accumulation effect. Without the need of a mechanical delay stage, this ps-TTR system can measure the thermal decay curve from 500 ps up to 1 ms. Three groups of samples are tested: bulk crystals (glass, Si, GaAs, and sapphire); MoS2 thin films (157 similar to 900 nm thickness); InGaAs random alloy and GaAs/InAs digital alloy (short period superlattices). Analysis of the thermoreflectance signals shows that this ps-TTR system is able to measure both thermal conductivity and interface conductance in nanostructures. The measured thermal conductivity values in bulk crystals, MoS2 thin films, and InGaAs random alloy are all consistent with literature values. Cross-plane thermal conductivity in MoS2 thin films does not show obvious thickness dependence. Thermal conductivities of GaAs/InAs digital alloys are smaller than InGaAs random alloy, due to the efficient scattering at interfaces. We also discuss the advantages and disadvantages of this newly developed ps-TTR system comparing with the popular time-domain thermoreflectance system.
引用
收藏
页码:211 / 221
页数:11
相关论文
共 47 条
[1]   THERMAL, ELECTRICAL AND OPTICAL PROPERTIES OF (IN,GA)AS ALLOYS [J].
ABRAHAMS, MS ;
BRAUNSTEIN, R ;
ROSI, FD .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1959, 10 (2-3) :204-210
[2]   Temperature-Dependent Thermal Properties of Phase-Change Memory Electrode Materials [J].
Bozorg-Grayeli, Elah ;
Reifenberg, John P. ;
Panzer, Matthew A. ;
Rowlette, Jeremy A. ;
Goodson, Kenneth E. .
IEEE ELECTRON DEVICE LETTERS, 2011, 32 (09) :1281-1283
[3]   Analysis of heat flow in layered structures for time-domain thermoreflectance [J].
Cahill, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (12) :5119-5122
[4]   Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2 [J].
Cai, Yongqing ;
Lan, Jinghua ;
Zhang, Gang ;
Zhang, Yong-Wei .
PHYSICAL REVIEW B, 2014, 89 (03)
[5]   Improved apparatus for picosecond pump-and-probe optical measurements [J].
Capinski, WS ;
Maris, HJ .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1996, 67 (08) :2720-2726
[6]   Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices [J].
Chen, G .
PHYSICAL REVIEW B, 1998, 57 (23) :14958-14973
[7]   Comparison between Grating Imaging and Transient Grating Techniques on Measuring Carrier Diffusion in Semiconductor [J].
Chen, Ke ;
Meng, Xianghai ;
He, Feng ;
Zhou, Yongjian ;
Jeong, Jihoon ;
Sheehan, Nathanial ;
Bank, Seth R. ;
Wang, Yaguo .
NANOSCALE AND MICROSCALE THERMOPHYSICAL ENGINEERING, 2018, 22 (04) :348-359
[8]   Probing anisotropic heat transport using time-domain thermoreflectance with offset laser spots [J].
Feser, Joseph P. ;
Cahill, David G. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (10)
[9]   ASSESSMENT OF THERMAL PROPERTIES VIA NANOSECOND THERMOREFLECTANCE METHOD [J].
Garrelts, Richard ;
Marconnet, Amy ;
Xu, Xianfan .
NANOSCALE AND MICROSCALE THERMOPHYSICAL ENGINEERING, 2015, 19 (04) :245-257
[10]   Layer thickness-dependent phonon properties and thermal conductivity of MoS2 [J].
Gu, Xiaokun ;
Li, Baowen ;
Yang, Ronggui .
JOURNAL OF APPLIED PHYSICS, 2016, 119 (08)