The quadratic Waring-Goldbach problem

被引:18
作者
Liu, JY
Wooley, TD
Yu, G
机构
[1] Leconte Coll, Coll Sci & Math, Dept Math, Columbia, SC 29208 USA
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[3] Shandong Univ, Dept Math, Jinan 250100, Peoples R China
基金
美国国家科学基金会;
关键词
Waring-Goldbach problem; Hardy-Littlewood method; Dirichlet L-functions;
D O I
10.1016/j.jnt.2004.04.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is conjectured that Lagrange's theorem of four squares is true for prime variables, i.e. all positive integers n with n equivalent to 4 (mod 24) are the sum of four squares of primes. In this paper, the size for the exceptional set in the above conjecture is reduced to O(N3/8+epsilon). (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:298 / 321
页数:24
相关论文
共 20 条
[1]  
BRUDERN J, 1994, J REINE ANGEW MATH, V454, P59
[2]  
Davenport H., 1980, MULTIPLICATIVE NUMBE
[3]   LARGE SIEVE DENSITY ESTIMATE NEAR SIGMA=1 [J].
GALLAGHER, PX .
INVENTIONES MATHEMATICAE, 1970, 11 (04) :329-+
[4]  
GHOSH A, 1981, P LOND MATH SOC, V42, P252
[5]  
Greaves G., 1976, ACTA ARITH, V29, P257
[6]  
Heath-Brown DR, 2003, J REINE ANGEW MATH, V558, P159
[7]   PRIME-NUMBERS IN SHORT INTERVALS AND A GENERALIZED VAUGHAN IDENTITY [J].
HEATHBROWN, DR .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1982, 34 (06) :1365-1377
[8]  
Hua LK., 1938, Q J MATH OXFORD, V9, P68, DOI [10.1093/qmath/os-9.1.68, DOI 10.1093/QMATH/OS-9.1.68]
[9]  
Huxley M N., 1974, Acta Arithmetica, V26, P435, DOI DOI 10.4064/AA-26-4-435-444
[10]   LINNIKS CONSTANT [J].
JUTILA, M .
MATHEMATICA SCANDINAVICA, 1977, 41 (01) :45-62