Numerical modeling and performance analysis of a membrane-based air dehumidifier using ionic liquid desiccant

被引:9
|
作者
Liu, Xiaoli [1 ]
Qu, Ming [1 ]
Liu, Xiaobing [2 ]
Wang, Lingshi [2 ]
Warner, Joseph [2 ]
Gao, Zhiming [2 ]
机构
[1] Purdue Univ, Lyles Sch Civil Engn, Civil Engn Bldg,550 Stadium Mall Dr, W Lafayette, IN 47907 USA
[2] Oak Ridge Natl Lab, Oak Ridge, TN USA
关键词
Numerical modeling; Membrane; Ionic liquid desiccant; Air dehumidifier; MASS EXCHANGER; RELATIVE-HUMIDITY; HEAT; FLOW; SYSTEM; CONTACTOR; SINGLE;
D O I
10.1016/j.applthermaleng.2020.115754
中图分类号
O414.1 [热力学];
学科分类号
摘要
Membrane-based Liquid Desiccant Air Dehumidifier (MLDAD) has the potential to overcome the shortcomings of the conventional open-tower liquid desiccant air dehumidifier. The MLDAD uses membranes with high water vapor permeability to separate air stream from the liquid desiccant and thus eliminates carry-over and the resulting corrosion issues. Recently, the ionic liquid desiccant becomes a promising alternative to conventional liquid desiccant. The ionic liquid desiccant has a large potential of dehumidification, which is also non-corrosive to metals and non-crystallizable. A two-dimensional numerical heat and mass transfer model of the MLDAD using a recently identified ionic liquid desiccant, [EMIM]OAc, is presented in this paper. This model can simulate the performance of the MLDAD with various designs, including different selections of liquid desiccant and membrane materials, dimensions of the MLDAD, and flow patterns. For porous membranes, this model accounts for several micro-scale mass transfer mechanisms of vapor transportation across the membrane. It can also model the mass transfer performance of dehumidifiers using non-porous membranes based on the experimentally measured membrane permeance. The numerical model was validated against the performance data available from literature and experimental tests. The maximum discrepancy of the latent effectiveness between the measured and the model-predicted results was about 6% when porous membranes were used. A parametric study was conducted with the numerical model. The results indicated that the membrane permeability, air path height, and solution to air mass ratio were the most critical parameters, determining the dehumidification performance of the MLDAD.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Optimization of Liquid Desiccant Dehumidifier Performance Using Taguchi Method
    Seenivasan, D.
    Selladurai, V.
    Senthil, P.
    ADVANCES IN MECHANICAL ENGINEERING, 2014,
  • [32] Liquid desiccant-based deep dehumidifier working with a novel ionic liquid: Prediction model and performance comparison
    Cao, Bowen
    Yin, Yonggao
    Zhang, Fan
    Ji, Qiang
    Chen, Wanhe
    INTERNATIONAL JOURNAL OF REFRIGERATION, 2023, 146 : 74 - 87
  • [33] Performance investigation of desiccant liquid air membrane energy exchanger: Air and lithium chloride effects
    Sabek, S.
    Ben Nasr, K.
    Tiss, F.
    Chouikh, R.
    Guizani, A.
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2017, 80 : 145 - 157
  • [34] Parametric analysis of a cross-flow membrane-based parallel-plate liquid desiccant dehumidification system: Numerical and experimental data
    Bai, Hongyu
    Zhu, Jie
    Chen, Ziwei
    Chu, Junze
    ENERGY AND BUILDINGS, 2018, 158 : 494 - 508
  • [35] Mass Transfer Correlation for Tubular Membrane-Based Liquid Desiccant Air-Conditioning System
    Cihan, Ertugrul
    Kavasogullari, Baris
    Demir, Hasan
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2020, 45 (02) : 519 - 529
  • [36] Mathematical model and performance analysis of a novel outside evaporative cooling liquid desiccant dehumidifier
    Peng, Donggen
    Cheng, Xiaosong
    Li, Shuangling
    Zhang, Xiaosong
    Luo, Danting
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2017, 82 : 212 - 226
  • [37] Performance of a proposed complete wetting surface counter flow channel type liquid desiccant air dehumidifier
    Hassan, M. Salah
    Hassan, A. A. M.
    RENEWABLE ENERGY, 2009, 34 (10) : 2107 - 2116
  • [38] On the dimensional analysis of a cross-flow flat-plate membrane liquid desiccant dehumidifier
    Lin, Jie
    Huang, Simin
    Wang, Ruzhu
    Chua, Kian Jon
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 1467 - 1472
  • [39] Numerical Modeling of an Air Gap Membrane Distillation Regenerator for Liquid Desiccant Air-Conditioning Applications
    Gao, Yu
    Lu, Lin
    ADVANCES IN COMPUTATIONAL HEAT AND MASS TRANSFER, ICCHMT 2023, VOL 1, 2024, : 3 - 12
  • [40] Steady-state performance evaluation and energy assessment of a complete membrane-based liquid desiccant dehumidification system
    Bai, Hongyu
    Zhu, Jie
    Chen, Xiangjie
    Chu, Junze
    Cui, Yuanlong
    Yan, Yuying
    APPLIED ENERGY, 2020, 258