A note on the solution of perturbed Korteweg-de Vries equation

被引:21
作者
Demiray, H [1 ]
机构
[1] Isik Univ, Fac Sci & Letters, Dept Math, TR-80670 Maslak, Turkey
关键词
perturbed KdV equation; analytical solution;
D O I
10.1016/S0096-3003(01)00222-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, utilizing the hyperbolic tangent method, a travelling wave solution is presented for the perturbed Korteweg-de Vries (KdV) equation, which was studied before by inverse scattering [Elements of soliton theory, Wiley, New York, 1980] and perturbation [Wave Motion 14 (1991) 85] methods. It is observed that the perturbed KdV equation still assume, a solitary wave solution with decaying amplitude in time. (C) 2002 Published by Elsevier Science Inc.
引用
收藏
页码:643 / 647
页数:5
相关论文
共 6 条
[1]  
DEMIRAY H, 1998, ARI, V51, P98
[2]   SOLUTIONS TO THE PERTURBED KDV EQUATION [J].
ENGELBRECHT, J .
WAVE MOTION, 1991, 14 (01) :85-92
[3]  
LAMB GL, 1980, ELEMENTS SOLITON THE
[4]   The theory of nonlinear ion-acoustic waves revisited [J].
Malfliet, W ;
Wieers, E .
JOURNAL OF PLASMA PHYSICS, 1996, 56 :441-450
[5]   HIROTAS METHOD AND THE SINGULAR MANIFOLD EXPANSION [J].
NOZAKI, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1987, 56 (09) :3052-3054
[6]   THE CLASSICAL LIMIT FOR THE HOLSTEIN-PRIMAKOFF REPRESENTATION IN THE SOLITON THEORY OF HEISENBERG-CHAINS [J].
SKRINJAR, MJ ;
KAPOR, DV ;
STOJANOVIC, SD .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1989, 1 (04) :725-732