Virtual histology of transgenic mouse embryos for high-throughput phenotyping

被引:134
|
作者
Johnson, John T.
Hansen, Mark S.
Wu, Isabel
Healy, Lindsey J.
Johnson, Christopher R.
Jones, Greg M.
Capecchi, Mario R.
Keller, Charles [1 ]
机构
[1] Univ Texas, Hlth Sci Ctr, Dept Cellular & Struct Biol, Childrens Canc Res Inst, San Antonio, TX 78285 USA
[2] Univ Texas, Hlth Sci Ctr, Dept Pediat, Childrens Canc Res Inst, San Antonio, TX 78285 USA
[3] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA
[4] Univ Utah, Div Pediat Hematol Oncol, Dept Pediat, Salt Lake City, UT 84112 USA
[5] Univ Utah, Dept Human Genet, Salt Lake City, UT USA
[6] Univ Utah, Howard Hughes Med Inst, Salt Lake City, UT USA
来源
PLOS GENETICS | 2006年 / 2卷 / 04期
关键词
D O I
10.1371/journal.pgen.0020061
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
A bold new effort to disrupt every gene in the mouse genome necessitates systematic, interdisciplinary approaches to analyzing patterning defects in the mouse embryo. We present a novel, rapid, and inexpensive method for obtaining high-resolution virtual histology for phenotypic assessment of mouse embryos. Using osmium tetroxide to differentially stain tissues followed by volumetric X-ray computed tomography to image whole embryos, isometric resolutions of 27 mu m or 8 mu m were achieved with scan times of 2 h or 12 h, respectively, using mid- gestation E9.5 - E12.5 embryos. The datasets generated by this method are immediately amenable to state- of- the- art computational methods of organ patterning analysis. This technique to assess embryo anatomy represents a significant improvement in resolution, time, and expense for the quantitative, three- dimensional analysis of developmental patterning defects attributed to genetically engineered mutations and chemically induced embryotoxicity.
引用
收藏
页码:471 / 477
页数:7
相关论文
共 50 条
  • [1] Magnetic resonance virtual histology for embryos: 3D atlases for automated high-throughput phenotyping
    Cleary, Jon O.
    Modat, Marc
    Norris, Francesca C.
    Price, Anthony N.
    Jayakody, Sujatha A.
    Martinez-Barbera, Juan Pedro
    Greene, Nicholas D. E.
    Hawkes, David J.
    Ordidge, Roger J.
    Scambler, Peter J.
    Ourselin, Sebastien
    Lythgoe, Mark F.
    NEUROIMAGE, 2011, 54 (02) : 769 - 778
  • [2] High-throughput mouse phenotyping
    Gates, Hilary
    Mallon, Ann-Marie
    Brown, Steve D. M.
    METHODS, 2011, 53 (04) : 394 - 404
  • [3] High-throughput morphologic phenotyping of the mouse brain with magnetic resonance histology
    Johnson, G. Allan
    Ali-Sharief, Anjum
    Badea, Alexandra
    Brandenburg, Jeffrey
    Cofer, Gary
    Fubara, Boma
    Gewalt, Sally
    Hedlund, Laurence W.
    Upchurch, Lucy
    NEUROIMAGE, 2007, 37 (01) : 82 - 89
  • [4] The Informatics of High-Throughput Mouse Phenotyping: EUMODIC and Beyond
    Hancock, John M.
    Gates, Hilary
    MOUSE AS A MODEL ORGANISM: FROM ANIMALS TO CELLS, 2011, : 77 - 87
  • [5] High-throughput fluorescent screening of transgenic animals: Phenotyping and haplotyping
    Hellrung, Danie J.
    Rossi, Gabriela
    Link, Charles J.
    CYTOMETRY PART A, 2006, 69A (10) : 1092 - 1095
  • [6] Mouse Eye Enucleation for Remote High-throughput Phenotyping
    Mahajan, Vinit B.
    Skeie, Jessica M.
    Assefnia, Amir H.
    Mahajan, MaryAnn
    Tsang, Stephen H.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2011, (57):
  • [7] EuroPhenome: a repository for high-throughput mouse phenotyping data
    Morgan, Hugh
    Beck, Tim
    Blake, Andrew
    Gates, Hilary
    Adams, Niels
    Debouzy, Guillaume
    Leblanc, Sophie
    Lengger, Christoph
    Maier, Holger
    Melvin, David
    Meziane, Hamid
    Richardson, Dave
    Wells, Sara
    White, Jacqui
    Wood, Joe
    de Angelis, Martin Hrabe
    Brown, Steve D. M.
    Hancock, John M.
    Mallon, Ann-Marie
    NUCLEIC ACIDS RESEARCH, 2010, 38 : D577 - D585
  • [8] High-throughput phenotyping
    Natalie de Souza
    Nature Methods, 2010, 7 (1) : 36 - 36
  • [9] High-throughput phenotyping
    Gehan, Malia A.
    Kellogg, Elizabeth A.
    AMERICAN JOURNAL OF BOTANY, 2017, 104 (04) : 505 - 508
  • [10] High-throughput phenotyping
    de Souza, Natalie
    NATURE METHODS, 2010, 7 (01) : 36 - 36