Chiral magnetic effect at finite temperature in a field-theoretic approach

被引:3
作者
Beneventano, C. G. [1 ,2 ]
Nieto, M. [3 ]
Santangelo, E. M. [3 ]
机构
[1] Univ Nacl La Plata, Dept Fis, Inst Fis La Plata, CONICET, CC 67, RA-1900 La Plata, Argentina
[2] Univ Nacl La Plata, Fac Ingn, Inst Fis La Plata, CONICET, CC 67, RA-1900 La Plata, Argentina
[3] Univ Nacl La Plata, Dept Fis, CC 67, RA-1900 La Plata, Argentina
关键词
chiral magnetic effect; finite temperature field theory; zeta function regularization; GRAPHENE; MODEL;
D O I
10.1088/1751-8121/abc221
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the existence (or lack thereof) of the chiral magnetic effect (CME) in the framework of finite temperature field theory, studied through the path integral approach and regularized via the zeta function technique. We show that, independently of the temperature, gauge invariance implies the absence of the effect, a fact proved, at zero temperature and in a Hamiltonian approach, by Yamamoto. Indeed, the effect only appears when the manifold is finite in the direction of the magnetic field and gauge-invariance breaking boundary conditions are imposed. We present an explicit calculation for antiperiodic and periodic boundary conditions, which do allow for a CME, since only 'large' gauge transformations are, then, an invariance of the theory. In both cases, the associated current does depend on the temperature, a well as on the size of the sample in the direction of the magnetic field, even for a temperature-independent chiral chemical potential. In particular, for antiperiodic boundary conditions, the value of this current only agrees with the result usually quoted in the literature on the subject in the zero-temperature limit, while it decreases with the temperature in a well-determined way.
引用
收藏
页数:13
相关论文
共 40 条
[1]   AXIAL-VECTOR VERTEX IN SPINOR ELECTRODYNAMICS [J].
ADLER, SL .
PHYSICAL REVIEW, 1969, 177 (5P2) :2426-&
[2]  
[Anonymous], 2014, Table of Integrals, Series, and Products, DOI DOI 10.1016/B978-0-12-384933-5.00009-6
[3]   Thermodynamics of conformal fields in topologically non-trivial space-time backgrounds [J].
Asorey, M. ;
Beneventano, C. G. ;
D'Ascanio, D. ;
Santangelo, E. M. .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (04)
[4]  
Basar G., 2013, Lect. Notes Phys., V871, P261
[5]   A PCAC PUZZLE - PI0-)GAMMAGAMMA IN SIGMA-MODEL [J].
BELL, JS ;
JACKIW, R .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1969, 60 (01) :47-+
[6]   The quantum Hall effect in graphene samples and the relativistic Dirac effective action [J].
Beneventano, C. G. ;
Giacconi, Paola ;
Santangelo, E. M. ;
Soldati, Roberto .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (24) :F435-F442
[7]   Mass distortions and edge modes in graphene armchair nanoribbons [J].
Beneventano, C. G. ;
Fialkovsky, I. V. ;
Nieto, M. ;
Santangelo, E. M. .
PHYSICAL REVIEW B, 2018, 97 (15)
[8]   Charge density and conductivity of disordered Berry-Mondragon graphene nanoribbons [J].
Beneventano, Carlota G. ;
Fialkovsky, Ignat ;
Mariel Santangelo, Eve ;
Vassilevich, Dmitri V. .
EUROPEAN PHYSICAL JOURNAL B, 2014, 87 (03)
[9]   Strong ellipticity and spectral properties of chiral bag boundary conditions [J].
Beneventano, CG ;
Gilkey, PB ;
Kirsten, K ;
Santangelo, EM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (45) :11533-11543
[10]   Condensed matter realization of the axial magnetic effect [J].
Chernodub, Maxim N. ;
Cortijo, Alberto ;
Grushin, Adolfo G. ;
Landsteiner, Karl ;
Vozmediano, Maria A. H. .
PHYSICAL REVIEW B, 2014, 89 (08)