On the Cauchy problem for the fractional drift- diffusion system in critical Besov spaces

被引:11
作者
Zhao, Jihong [1 ]
Liu, Qiao [2 ]
机构
[1] Northwest A&F Univ, Coll Sci, Yangling 712100, Shaanxi, Peoples R China
[2] Hunan Normal Univ, Dept Math, Changsha 410081, Hunan, Peoples R China
关键词
fractional drift-diffusion system; Cauchy problem; mild solutions; Besov spaces; 35C06; 35R11; 76W05; NAVIER-STOKES EQUATIONS; NONLINEAR PARABOLIC EQUATIONS; LONG-TIME BEHAVIOR; KELLER-SEGEL MODEL; WELL-POSEDNESS; DEBYE SYSTEM; ASYMPTOTIC-BEHAVIOR; CARRIER TRANSPORT; BASIC EQUATIONS; EXISTENCE;
D O I
10.1080/00036811.2013.833608
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish global well-posedness and asymptotic stability of mild solutions for the Cauchy problem of the fractional drift-diffusion system with small initial data in critical Besov spaces. The regularizing-decay rate estimates of mild solutions are also proved, which imply that mild solutions are analytic in space variables.
引用
收藏
页码:1431 / 1450
页数:20
相关论文
共 30 条
[1]   A note on the long time behavior for the drift-diffusion-Poisson system [J].
Ben Abdallah, N ;
Méhats, F ;
Vauchelet, N .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (10) :683-688
[2]   THE DEBYE SYSTEM - EXISTENCE AND LARGE TIME BEHAVIOR OF SOLUTIONS [J].
BILER, P ;
HEBISCH, W ;
NADZIEJA, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 23 (09) :1189-1209
[3]   Long time behavior of solutions to Nernst-Planck and Debye-Huckel drift-diffusion systems [J].
Biler, P ;
Dolbeault, J .
ANNALES HENRI POINCARE, 2000, 1 (03) :461-472
[4]  
Biler P., 1994, Colloq. Math, V66, P319, DOI DOI 10.4064/CM-66-2-319-334
[5]   Blowup of solutions to generalized Keller-Segel model [J].
Biler, Piotr ;
Karch, Grzegorz .
JOURNAL OF EVOLUTION EQUATIONS, 2010, 10 (02) :247-262
[6]   Two-dimensional chemotaxis models with fractional diffusion [J].
Biler, Piotr ;
Wu, Gang .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (01) :112-126
[7]   Far field asymptotics of solutions to convection equation with anomalous diffusion [J].
Brandolese, Lorenzo ;
Karch, Grzegorz .
JOURNAL OF EVOLUTION EQUATIONS, 2008, 8 (02) :307-326
[8]   The fractional Keller-Segel model [J].
Escudero, Carlos .
NONLINEARITY, 2006, 19 (12) :2909-2918
[9]   ON EXISTENCE, UNIQUENESS AND ASYMPTOTIC-BEHAVIOR OF SOLUTIONS OF THE BASIC EQUATIONS FOR CARRIER TRANSPORT IN SEMICONDUCTORS [J].
GAJEWSKI, H .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1985, 65 (02) :101-108
[10]   ON THE BASIC EQUATIONS FOR CARRIER TRANSPORT IN SEMICONDUCTORS [J].
GAJEWSKI, H ;
GROGER, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 113 (01) :12-35