Strong convergence of split-step backward Euler method for stochastic age-dependent capital system with Markovian switching

被引:6
作者
Zhang, Qimin [1 ,2 ]
Liu, Yating [1 ]
Li, Xining [2 ]
机构
[1] North Univ Nationalities, Inst Informat & Syst Sci, Yinchuan 750021, Peoples R China
[2] NingXia Univ, Sch Math & Comp Sci, Yinchuan 750021, Peoples R China
基金
中国国家自然科学基金;
关键词
Stochastic age-dependent capital system; One-sided local Lipschitz condition; Local Lipschitz condition; Split-step backward Euler method; Markovian switching; NUMERICAL-SOLUTIONS; DIFFERENTIAL-EQUATIONS; DRIFT;
D O I
10.1016/j.amc.2013.12.189
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present and analyze the split-step backward Euler method for the stochastic capital system with Markovian switching. Under the one-sided local Lipschitz condition on the drift and local Lipschitz condition on the diffusion, we prove the split-step backward Euler method converges with strong order of one half to the true solution. A numerical example is provided to illustrate the theoretical results. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:439 / 453
页数:15
相关论文
共 10 条
[1]   Strong convergence of split-step backward Euler method for stochastic differential equations with non-smooth drift [J].
Bastani, Ali Foroush ;
Tahmasebi, Mahdieh .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (07) :1903-1918
[2]  
Gyongy Istvan, 2007, Interdiscip. Math. Sci., V2, P281
[3]  
Halidias N., 2006, J COMPUT APPL MATH S, V7, P1
[4]   Strong convergence of Euler-type methods for nonlinear stochastic differential equations [J].
Higham, DJ ;
Mao, XR ;
Stuart, AM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (03) :1041-1063
[5]   Strong solutions of stochastic equations with singular time dependent drift [J].
Krylov, NV ;
Röckner, M .
PROBABILITY THEORY AND RELATED FIELDS, 2005, 131 (02) :154-196
[6]   The rate of convergence of the Euler scheme to the solution of stochastic differential equations with nonhomogeneous coefficients and non-Lipschitz diffusion [J].
Mishura, Yuliya S. ;
Posashkova, Svitlana V. .
RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2011, 19 (01) :63-89
[7]  
Szpyuch L., 2010, STRONG CONVERGENCE N
[8]   Exponential stability of numerical solutions for a class of stochastic age-dependent capital system with Poisson jumps [J].
Zhang Qi-min ;
Pang Wan-kai ;
Leung Ping-kei .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (12) :3369-3377
[9]   Convergence of numerical solutions for a class of stochastic age-dependent capital system with Markovian switching [J].
Zhang Qi-min .
ECONOMIC MODELLING, 2011, 28 (03) :1195-1201
[10]   Convergence of numerical solutions for a class of stochastic age-dependent capital system with random jump magnitudes [J].
Zhang, Qimin ;
Rathinasamy, A. .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (14) :7297-7305