Inequalities for relative operator entropy in terms of Tsallis' entropy

被引:0
作者
Dragomir, S. S. [1 ,2 ]
机构
[1] Victoria Univ, Math, Coll Engn & Sci, POB 14428, Melbourne, Vic 8001, Australia
[2] Univ Witwatersrand, DST NRF Ctr Excellence Math & Stat Sci, Sch Comp Sci & Appl Math, Private Bag 3, ZA-2050 Johannesburg, South Africa
关键词
Inequalities for logarithm; relative operator entropy; operator entropy;
D O I
10.1142/S1793557119500633
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we obtain new inequalities for relative operator entropy S(A \ B) in terms of Tsallis' relative entropy T +/- t (A \ B), t > 0 in the case of positive invertible operators A, B. Further bounds for B >= A are also provided.
引用
收藏
页数:22
相关论文
共 19 条
[1]  
Dragomir S. S., 2015, RGMIA RES REP COLL, V18
[2]  
Dragomir S. S., 2016, RGMIA RES REP COLLEC, V19, P108
[3]  
Dragomir S. S., 2016, RGMIA RES REP COLLEC, V19, P132
[4]  
Dragomir S.S., 2016, RGMIA RES REP COLL, V19
[5]  
Dragomir S. S., 2015, RGMIA RES REP COLLEC, V19
[6]  
Dragomir SS, 2001, INEQUALITY THEORY AND APPLICATIONS, VOL 1, P123
[7]  
Fujii J.I., 1989, Math. Jpn., V34, P541
[8]  
Fujii J I., 1989, Math. Japon, V34, P341
[9]   Fundamental properties of Tsallis relative entropy [J].
Furuichi, S ;
Yanagi, K ;
Kuriyama, K .
JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (12) :4868-4877
[10]   PRECISE ESTIMATES OF BOUNDS ON RELATIVE OPERATOR ENTROPIES [J].
Furuichi, Shigeru .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (03) :869-877