The Method for Short-Term Forecast Electricity Load Based on Criteria Informativeness and Compactness

被引:0
作者
Gritsay, Aleksandr S. [1 ]
Makarov, Vladimir V. [1 ]
Khamitov, Rustam N. [2 ]
Tatevosyan, Andrey A. [2 ]
Gritsay, Sergey N. [3 ]
机构
[1] Omsk State Tech Univ, Comp Sci Fac, Omsk, Russia
[2] Omsk State Tech Univ, Elect Engn Fac, Omsk, Russia
[3] Omsk State Rd Management Co, Elect Dept, Omsk, Russia
来源
PROCEEDINGS OF THE 2019 IEEE CONFERENCE OF RUSSIAN YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING (EICONRUS) | 2019年
关键词
forecast electricity load; rapidminer; method for prepare training set; neural network; NEURAL-NETWORK;
D O I
10.1109/eiconrus.2019.8657160
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the article research the method of preparing training samples for building the process of forecast electricity load. FRiS-Stolp function was used to clear the training samples from the noise component and emissions data. The optimal value of the parameter F* for eliminate noise is obtained. The results are presented in the charts. The forecast electricity load error for different values of the coefficient F* is also shown.
引用
收藏
页码:527 / 530
页数:4
相关论文
共 12 条
[1]  
Birukov EV, 2004, KORUS 2004, Vol 1, Proceedings, P197
[2]   Artificial neural network model for forecasting sub-hourly electricity usage in commercial buildings [J].
Chae, Young Tae ;
Horesh, Raya ;
Hwang, Youngdeok ;
Lee, Young M. .
ENERGY AND BUILDINGS, 2016, 111 :184-194
[3]  
Dugin D. D., 2016, P ALL RUSS SCI C STU, P51
[4]  
Gritsay A. S., 2014, INFORM COMPUTERS COM, P125
[5]   Day-Ahead Short-Term Forecasting Electricity Load via Approximation [J].
Khamitov, R. N. ;
Gritsay, A. S. ;
Tyunkov, D. A. ;
Sinitsin, G. E. .
5TH INTERNATIONAL CONFERENCE: MODERN TECHNOLOGIES FOR NON-DESTRUCTIVE TESTING, 2017, 189
[6]  
Khamitov R. N., 2016, B SAMARA STATE TU, V4, P91
[7]  
Makoklyuev BI, 2015, 2015 IEEE 5TH INTERNATIONAL CONFERENCE ON POWER ENGINEERING, ENERGY AND ELECTRICAL DRIVES (POWERENG), P268, DOI 10.1109/PowerEng.2015.7266331
[8]  
Munkhjargal S., 8 KOR RUSS INT S SCI
[9]   Mathematical modelling and short-term forecasting of electricity consumption of the power system, with due account of air temperature and natural illumination, based on support vector machine and particle swarm [J].
Nadtoka, I. I. ;
Balasim, Al-Zihery M. .
INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING (ICIE-2015), 2015, 129 :657-663
[10]  
Potapov VI, 2016, DYN SYST MECH MACH