Color image segmentation using adaptive mean shift and statistical model-based methods

被引:23
|
作者
Park, Jong Hyun [1 ]
Lee, Guee Sang
Park, Soon Young [2 ]
机构
[1] Chonnam Natl Univ, Sch Elect & Comp Engn, Multimedia & Image Proc Lab, Dept Comp Sci, Kwangju 500757, South Korea
[2] Mokpo Natl Univ, Dept Elect Engn, Chungnam, South Korea
关键词
Color image segmentation; Mean-shift; Mode detection; Mean field annealing EM; Gaussian mixture model; EM;
D O I
10.1016/j.camwa.2008.10.053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose an unsupervised segmentation algorithm for color images based on Gaussian mixture models (GMMs). The number of mixture components is determined automatically by adaptive mean shift, in which local clusters are estimated by repeatedly searching for higher density points in feature vector space. For the estimation of parameters of GMMs, the mean field annealing expectation-maximization (EM) is employed. The mean field annealing EM provides a global optimal solution to overcome the local maxima problem in a mixture model. By combining the adaptive mean shift and the mean field annealing EM, natural color images are segmented automatically without over-segmentation or isolated regions. The experiments show that the proposed algorithm can produce satisfactory segmentation without any a priori information. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:970 / 980
页数:11
相关论文
共 50 条
  • [1] An effective color image segmentation approach using neutrosophic adaptive mean shift clustering
    Guo, Yanhui
    Sengur, Abdulkadir
    Akbulut, Yaman
    Shipley, Abriel
    MEASUREMENT, 2018, 119 : 28 - 40
  • [2] Color image segmentation using mean shift and improved ant clustering
    刘玲星
    谭冠政
    M.Sami Soliman
    JournalofCentralSouthUniversity, 2012, 19 (04) : 1040 - 1048
  • [3] Color image segmentation using mean shift and improved ant clustering
    Ling-xing Liu
    Guan-zheng Tan
    M. Sami Soliman
    Journal of Central South University, 2012, 19 : 1040 - 1048
  • [4] Color image segmentation using mean shift and improved ant clustering
    Liu Ling-xing
    Tan Guan-zheng
    Soliman, M. Sami
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2012, 19 (04) : 1040 - 1048
  • [5] Color Image Segmentation Using Mean Shift and Improved Spectral Clustering
    Gui, Yang
    Bai, Xiang
    Li, Zheng
    Yuan, Yun
    2012 12TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS & VISION (ICARCV), 2012, : 1386 - 1391
  • [6] COLOR SALIENCY MODEL BASED ON MEAN SHIFT SEGMENTATION
    Liu, Xu
    Qin, Zengchang
    Zhang, Xiaofan
    Wan, Tao
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 2104 - 2108
  • [7] Mean shift based adaptive texture image segmentation method
    Wang S.
    Xia Y.
    Jiao L.-C.
    Ruan Jian Xue Bao/Journal of Software, 2010, 21 (06): : 1451 - 1461
  • [8] Color image segmentation of foreground and background based on Mean Shift algorithm
    Jingmin, Liang
    International Journal of Advancements in Computing Technology, 2012, 4 (01) : 127 - 135
  • [9] Image Segmentation Based on Adaptive Threshold Edge Detection and Mean Shift
    Ju, Zengwei
    Zhou, Jingli
    Wang, Xian
    Shu, Qin
    PROCEEDINGS OF 2013 IEEE 4TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS), 2012, : 385 - 388
  • [10] Color image segmentation using a Gaussian mixture model and a mean field annealing EM algorithm
    Park, JH
    Cho, WH
    Park, SY
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2003, E86D (10): : 2240 - 2248