Stable equivariant abelianization, its properties, and applications

被引:3
作者
dos Santos, Pedro F. [2 ]
Nie, Zhaohu [1 ]
机构
[1] Dept Math, Altoona, PA 16601 USA
[2] Univ Tecn Lisboa, Dept Math, Inst Super Tecn, P-1049001 Lisbon, Portugal
关键词
Mackey funcror; Stable equivariant abelianization; Infinite loop space; Equivariant Eilenberg-Mac Lane spectra; SYSTEMS;
D O I
10.1016/j.topol.2008.11.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a finite group. For a based G-space X and a Mackey functor M. a topological Mackey functor X (circle times) over tilde M is constructed, which will be called the stable equivariant abelianization of X with coefficients in M. When X is a based G-CW complex, X (circle times) over tilde M is shown to be an infinite loop space in the sense of G-spaces. This gives a version of the RO(G)-graded equivariant Dold-Thom theorem. Applying a variant of Elmendorf's construction, we get a model for the Eilenberg-Mac Lane spectrum HM. The proof uses a structure theorem for Mackey functors and our previous results. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:979 / 996
页数:18
相关论文
共 11 条
[1]  
[Anonymous], 1967, Lecture Notes in Mathematics
[2]   FIXED SET SYSTEMS OF EQUIVARIANT INFINITE LOOP-SPACES [J].
COSTENOBLE, SR ;
WANER, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 326 (02) :485-505
[3]  
DIECK TT, 1987, DEGRUYTER STUD MATH
[4]   QUASIFASERUNGEN UND UNENDLICHE SYMMETRISCHE PRODUKTE [J].
DOLD, A ;
THOM, R .
ANNALS OF MATHEMATICS, 1958, 67 (02) :239-281
[5]   A note on the equivariant Dold-Thom theorem [J].
dos Santos, PF .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2003, 183 (1-3) :299-312
[6]   SYSTEMS OF FIXED-POINT SETS [J].
ELMENDORF, AD .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) :275-284
[7]  
Goerss P G, 1999, PROG MATH, V174
[8]   SOME REMARKS ON THE STRUCTURE OF MACKEY FUNCTORS [J].
GREENLEES, JPC ;
MAY, JP .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 115 (01) :237-243
[9]  
LEWIS LG, 1986, LECT NOTES MATH, V1213, P1
[10]  
May JP, 1996, CBMS Reg. Conf. Ser. Math., V91